
xgBoost - Victor Kitov

xgBoost

Victor Kitov

1/10



xgBoost - Victor Kitov

Introduction

xgBoost - one of many open source realizations of gradient

boosting.

Very successful:

among 29 kaggle competitions on Kaggle in 2015 17 winning
solutions used xgBoost and among these 8 used only xgBoost.

Success reasons:

1 optimization criteria is �exible enough to �t any loss function
2 optimization criteria has regularization.
3 optimized for big data
4 optimized for sparse data

We will consider only optimization criteria here.

2/10



xgBoost - Victor Kitov

Boosting reminder

Boosting prediction is performed with sum of M predictor

functions:

ŷi =
M∑

m=1

fm(xi ),

where each fm is a regression tree:

fm ∈ {f (x) = wq(x)},
q : RD → T , w ∈ RT

T is the number of leaves.

Each tree fm:

has independent tree structure q(x) and weights w
is built greedily after optimizing f1, f2, ...fm−1 to achieve
greatest score improvement.

3/10



xgBoost - Victor Kitov

Optimization score

At step m we optimize:

L(m)(fm) =
N∑

n=1

L(yn, ŷ (m−1)n + fm(xn)) + R(fm) (1)

Here:

L(yn, ŷ (m)
n ) is the loss induced by predicting yn with ŷn

R(fm) = γT + 1

2
λ ‖w‖2 is the regularization term, penalizing

fm for complexity.

γT penalizes the number of leaves
‖w‖2 =

∑T
t w2

t penalizes the magnitude of leaf predictions.

4/10



xgBoost - Victor Kitov

Taylor expansion

Using Taylor expansion expand L(yn, ŷ (m)
n ) into

L(yn, ŷ (m)
n ) ≈ L(yn, ŷ (m−1)n ) + gnfm(xn) +

1

2
hnf

2

m(xn) (2)

where

gn =
∂

∂ŷ (m−1)
L
(
yn, ŷ

(m−1)
n

)
, hn =

∂2

∂2ŷ (m−1)
L
(
yn, ŷ

(m−1)
n

)
Plugging (2) into (1), obtain:

L(m)(fm) ≈
N∑

n=1

[
L(yn, ŷ (m−1)n ) + gnfm(xn) +

1

2
hnf

2

m(xn)

]
+R(fm)

(3)

5/10



xgBoost - Victor Kitov

Taylor expansion

We get approximate criterion for (3):

L̂(m)(fm) =
N∑

n=1

[
L(yn, ŷ (m−1)n ) + gnfm(xn) +

1

2
hnf

2

m(xn)

]

+γT +
1

2
λ

T∑
t=1

w2

t (4)

De�ne It = {n : q(xn) = t}. Then (4) can be rewritten as:

L̂(m)(fm) =
T∑
t=1

∑
n∈It

gn

wt +
1

2

∑
n∈It

hn + λ

w2

t

 (5)

+ γT + const(fm)

6/10



xgBoost - Victor Kitov

Optimized loss

Optimizing (5) with respect to wt , we obtain:

w∗t = −
∑

n∈It gn∑
n∈It hn + λ

Plugging w∗t into (5) gives

L∗ = −1

2

T∑
t=1

(∑
n∈It gn

)
2∑

n∈It hn + λ
+ γT + const(fm)

7/10



xgBoost - Victor Kitov

Split �nding

In optimized loss we have �xed optimal weight w∗t
Optimized loss can also be used as impurity function in greedy

one-step-ahead tree building.

de�ne I - indexes of objects in the node, being split into left

and right node

de�ne IL, IR - indexes of objects inside left and right node
using L∗ the split is found to maximize the gain:

gain = −L∗left − L∗right + L∗initial → max
feature, threshold

which is equal to

1

2


(∑

n∈IL gn
)
2∑

n∈IL hn + λ
+

(∑
n∈IR gn

)
2∑

n∈IR hn + λ
−
(∑

n∈I gn
)
2∑

n∈I hn + λ

− γ
8/10



xgBoost - Victor Kitov

Additional extensions of xgBoost

Shrinkage in xgBoost is the same as in usual boosting

Subsampling is possible:

over objects
over features

Approximate split �nding possible

suppose N (number of objects) is large.
for continuous feature there may be up to N unique feature
values.
instead of looking through all unique values, it is possible to
look through �xed number of percentiles:

found once and for all nodes

or recalculated at each node

9/10



xgBoost - Victor Kitov

Conclusion

xgBoost is very successful gradient boosting open source

implementation

tree construction is not tied to speci�c criteria (entropy, gini)

but is adapted to �nal user loss function

optimized loss function has regularization, penalizing complex

base learner trees.

it is possible to optimize through a representative subset of

feature values instead of all feature values by looping through

percentiles.

10/10


