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He tethered his horse, which had begun to shiver; fed it; and threw a light blanket
over its hindquarters against the chill. He kindled a small fire and prepared a meal,
then sat down to wait out the mist, taking up the eastern gourd and composing to
its eery metallic tones a chanted lament. The mist coiled around him, sent cold,
probing fingers into his meagre shelter. His words fell into the silence like stones
into the absolute abyss: ‘Strong visions: | have strong visions of this place in the
empty times... Far below there are wavering pines... | left the rowan elphin woods
to fulminate on ancient headlands, dipping slowly into the glasen seas of

evening... (The Pastel City by M. John Harrison)
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Topic Modeling

Topic modelling assumes that there are a number of /atent topics which explain

the text collection.
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Determination of the Number of Topics Intrinsically

A

Purpose: find out if intrinsic
model quality criteria help in
determining the number of topics.

Solution: train models with
different number of topics and
select the optimal number as
corresponding to the best quality. T s aan . I

Number of topics

Intrinsic quality measure

Expected possible dependencies of the intrinsic

quality criterion on the number of topics. 5/ 15



Related Work

e |datuning

Perplexity, topic diversity for LDA.
e TOM

Topic diversity, topic model stability.
e OCTIS

Topic diversity, coherence but without determining the number of topics.

Nikita M., Chaney N. Ldatuning: Tuning of the latent dirichlet allocation models parameters. — 2016. (github)
Guille A., Soriano-Morales E. P. TOM: A library for topic modeling and browsing. — 2016. (github)
Terragni S. et al. OCTIS: Comparing and optimizing topic models is simple! — 2021. (github)
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https://cran.r-project.org/package=ldatuning
https://github.com/nikita-moor/ldatuning
https://www.researchgate.net/publication/286921594_TOM_A_library_for_topic_modeling_and_browsing
https://github.com/AdrienGuille/TOM
https://aclanthology.org/2021.eacl-demos.31/
https://github.com/mind-Lab/octis

Intrinsic Quality Measures

e Perplexity (|)

J 113

Measure of model’s “surprise” when it sees text.
e Diversity and sufficiency (D-avg-COS, D-Spectral; 1)

If the number of topics is too large, the model produces a lot of small similar topics.
e Clustering (SilhC, CHI; 1)

How similar an object (word) is to its own cluster (topic) compared to other clusters.
e Stability (|)

Models with the “incorrect” number of topics are unstable (differ from each other).

https://github.com/machine-intelligence-laboratory/OptimalNumberOfTopics
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https://github.com/machine-intelligence-laboratory/OptimalNumberOfTopics

Intrinsic Quality Measures

e Information-theoretic (A/C, BIC, MDL; |)

Balance between model complexity and the goodness of fit
(“model complexity minus model likelihood”).

e Entropy (Rényi: |)

“Correct” number of particle states (word topics) should correspond to the
equilibrium state, which is characterised by the minimum of entropy.

e Top-tokens

Nonrandomness (Coherence; 1) and specificity (Lift; 1) of topic top words.

https://github.com/machine-intelligence-laboratory/OptimalNumberOfTopics 8/15


https://github.com/machine-intelligence-laboratory/OptimalNumberOfTopics

Methodology

FOR EACH dataset:
FOR EACH topic_model:
FOR EACH random_seed:
FOR EACH t FROM t_min(dataset) TO t_max(dataset):

init(topic_model, random_seed)
train(topic_model, t)

quality = eval(topic_model)
draw_on_plot(t, quality)

t_opt = analyze_plot() # search for pronounced min/max
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Models

PLSA: a simple topic model without any hyperparameters aside from T.
LDA: a well-known topic model, having priors for ® and © distributions.
Decorrelated (ARTM): attempts to reduce pairwise topic correlations.

Sparse (ARTM): divides its topics into background and specific (sparse).

Sparse decorrelated (ARTM): sparse and decorrelated simultaneously.

Hofmann, T. Probabilistic latent semantic analysis. — 1999.

Blei D. M., Ng A. Y., Jordan M. |. Latent dirichlet allocation. — 2003.

Vorontsov K. et al. Bigartm: Open source library for reqularized multimodal topic modeling of
large collections //AIST 2015.
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https://arxiv.org/abs/1301.6705
https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
https://link.springer.com/chapter/10.1007/978-3-319-26123-2_36
https://link.springer.com/chapter/10.1007/978-3-319-26123-2_36

Datasets

Dataset D |14 Texpected Tmin Tmax
WikiRef220 220 4839 5 2 20
20NG 18846 2174 1520 3 40
Reuters 10788 5074 90 a 180
Brown 500 7409 10-20 5 29
StackOverflow 895621 3430 40 5 60
PostNauka 3404 8417 1530 5 50
ruwiki-good 8603 236018 10/90 5 100

D — number of documents, W — size of vocabulary, T — number of topics (expected T, and

min/max values to be used in the experiments). Preprocessing: lemmatization, stop-words removal.
11/15
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Results

Optimal number of
topics depends on
the model.
Randomness
causes variance.
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Results
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Different criteria often do not agree with each other (but sometimes they do).
A set of quality metrics exploring various T for PLSA (WikiRef220). Cosine-based diversity
is taken with a negative sign. All metrics agree with 7 being a reasonable value for T.



Conclusion

Number of topics is a method- and a model-dependent quantity.
Number of topics is not an absolute property of a particular corpus.
Perplexity is not helpful for finding the number of topics.

Simplest approaches (AIC, BIC, MDL; Rényi) achieve best results.

Recommendations (based on evidence):

e Examine several related measures.
e Information-theoretic methods (AIC, BIC, MDL) are better employed in conjunction.

Recommendations (based on reflections on the topic):

e Select a model according to a secondary task.
e Build a hierarchy of topics and prune it afterwards.
e Utilize the process of human (semi-) supervision.

The main purpose of topic modeling should be the search for such a method of model training which,
given the number of topics, results in a model whose topics in the absence of external criterion are all
interpretable.
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