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Semantic segmentation

tree
sky

building
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road

 A task of simultaneous object segmentation and recognition
 And we try to learn it weakly supervised – with seeing only image “tags” during training;
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Constrained clustering
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Constrained clustering
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Constrained clustering
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Constrained clustering
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Constrained clustering

Unary potential: appearance likelihood for a superpixel
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Constrained clustering

Unary potential: a superpixel can only take a 
label given to the image
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Constrained clustering

 We can solve it using modified k-means (depending on an appearance model);
 Does not model all the dependencies in the data;

 Unregularized.
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Pairwise potentials!

+
We can solve it using 
iterative minimization;

Pairwise potential within an image: 
encourages label smootheness
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Multi Image Potentials

Pairwise potential between images: 
similar superpixels → same label



 

Building MIM: connect which images/superpixels ?
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Data-driven construction of a sparse set of connections
Connect each superpixel to
• k nearest appearance neighbors in other images sharing labels
• <= p superpixels in one image (variety)
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Why do MI potentials make any sense?

 A nearest neighbour graph can be 
interpreted as a model for a manifold, on 
which data lives;

 The pairwise potential penalizes cutting 
through the manifolds (areas of high 
density):

 A very similar regularizer is used in 
semi-supervised learning and 
dimensionality reduction;

 In a certain sense, it “unrolls” the 
manifolds;

 There is a relation to graph Laplacians 
and Laplace-Beltrami operator;

*Image courtesy of K.Q. Weinberger

In essence, we penalize labelling for 
changing on the manifolds formed by 
superpixels from images that share a 
label
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Inference: get y given Θ  

Energy minimization

MIM potentials are multi-label 
submodular

 → alpha-expansion
    [Boykov et al PAMI 2011] 



 

Learning: get y and Θ 

 Problem of minimizing the energy is mixed continuous/discrete

 Energy is 
 Convex, if labeling y if fixed;
 Metric, if θ is fixed;

 Iterative minimization:
        Init: set y to random labels fulfilling image label constraints

1. Fix y, train θ in standard ‘supervised’ maximum likelihood

2. Fix θ, use alpha-expansion (previous slide);
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MIM (as of ICCV'11)

What is missing?
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Generalized MIM
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Generalized MIM

Each potential  a different metric of 
similarity (colour, SIFT, texture, e.t.c.)
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Generalized MIM

Balance unary vs pairwise Balance different pairwise potentials

New structure parameters vector α 
controls the regularization
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GMIM - questions

 If alpha is fixed, we know what to do

 Iterative minimization from ICCV'11

 But how to choose α?

 Since it controls the strength and the form of regularization, we cannot use energy 
itself to select it;

 Trivial solution = minimal regularization:
 α_0 = 1;

 Our problem is weakly supervised, therefore we can't use cross-validation;
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Model selection for GMIM

 Model selection view:
 Every value of α defines a model;

 Space of all α span a family of models;

 We wish to select a model out the family:

 We need a meta-principle to score models;

 We need a practical search algorithm to find the one with the best score;
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Expected agreement

Learning and inference algorithm: Prediction algorithm:

Labeling inferred and labelling 
predicted should agree!
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Expected agreement
Labeling inferred and labelling 

predicted should agree!

 α lives in a multidimensional space (~7);

 No gradients available;

 How do we search for best α?
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Bayesian optimization with GP

Model expected agreement as GP:

With a Gaussian kernel:

Next point  Upper Confidence Bound:

*Image courtesy of A. KrauseSrinivas et al. ICML 10
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Prediction with MIM
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Prediction with MIM

Shotton et al. CVPR 08;  Guillaumin et al ICCV 09
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Prediction with MIM
Test image
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Prediction with MIM
Training images
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Prediction with MIM
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Appearance models via ERHF
Extremely Randomized Hashing Forest

 Requirements:
 Fast in training – we re-estimate 

them iteratively many-many times 
during training;

 Leverage diverse features – visual 
classes are very varied in 
appearance;

 Extremely Randomized Hashing 
Forest representation
 A forest of decision trees;
 Built upon any feature set;
 Every predicate in a tree is a 

hashing function;

 Naive Bayes:
 3 (sparse) matrix multiplications to 

retrain the model;
 Easy to weight data (according to 

amount of pixels in the superpixel;
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Implementation details

 Features for similarity metrics
 3 different features;
 Over superpixel and dilated area;
 Chi-square distance;
 2x3=6 pairwise potentials.

 Superpixel features for appearance 
models

 Only histogram features (baseline)
 1248

 ERHF with a full set
 3115

J. Tighe and S. Lazebnik ECCV 10
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GMIM vs state of the art

 Data - LabelMe subset of [2]:

 2.5K images, 33 classes;

 Quality metric:

 Average per class accuracy

1) J. Shotton, J.Winn, C. Rother, and A. Criminisi, “Textonboost: 
Joint appearance, shape and context modeling for multi-class 
object recognition and segmentation,” in ECCV, 2006.

2) C. Liu, J. Yuen, and A. Torralba, “Nonparametric scene 
parsing: label transfer via dense scene alignment.,” in CVPR, 
2009.

3) J. Tighe and S. Lazebnik, “Superparsing: Scalable 
nonparametric image parsing with superpixels,” in ECCV, 
2010.

4) MIM of ICCV'11

Method [1] [2] [3] [4] GMIM

supervision full full full weak weak

average acc. 13 24 29 14 21
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Evaluation of components

 MEA – Maximum Expected Agreement

 Full framework

 Baselines:

 average – set α to [0.5 1/k … 1/k];

 *best α – grid search, looking at training set pixel labels;

 *best α_0 + average – grid search for best α_0 looking at training set pixel labels and 

average for the rest;

 ERHF vs set of histogram features;
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Pictures!
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Discussion: Framework

 Ingredients:
 Regularizer form;
 Criterion to select regularizer's strength and structure;
 Way to search for the best one;
 Fast and rich appearance models;
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Discussion: Framework extensions

 Higher order potentials (or whichever buzzword you like)
 More constraints from bag labels;

 Hierarchical structure of superpixels/regions;

 ...

 → Can do, if you can do the inference;

 Pimp up appearance models
 As long as you can train them;
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Discussion: Model selection

 Fast to evaluate

 I have run it for ~100 parameter values now, 

but more in the future;

 Model-agnostic (better be)

 Calculating probabilities or anything like it is a 

computational nightmare;

 Changing model shouldn't change the 

validation;

 Best – just work with strings of labels 

inferred/predicted;

 VMI by Alberto could work!

 No i.i.d. Assumptions

 Removing i.i.d. is in the basis of our model
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Discussion: Optimization

 Should be black-box
 We have no gradient information;

 Should be non myopic
 Local extremums are there and they are 

plenty;

 Should be parallelizable
 We have clusters, why not use them?

 GPs work fine. Nice to haves:
 Show consistency;

 Maybe “better than grid search” bound 

like this:



 Given some reasonable assumptions 
of function smoothness

∀δ>0∃n (δ , f ) :∀ x ' :mn≥minx '−δ< x< x '+δ f ( x)∧n=...
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Future work

 Largestest scale
 Millions of images, hundreds of classes;
 Ideas – scaling by abstraction, peace-wise optimization;

 Transfer learning
 If we know how the bike looks, learning how the motorbike looks 

should be easier;

 Integrate any source of supervision
 Bounding boxes, some pixel labels, unlabelled data – all good!
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Results

Image / 
ground truth

Image / 
ground truth

MIM results MIM results

Image / 
ground truth

Image / 
ground truth

MIM results MIM results
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