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Weakly Supervised Structured Output Learning for
Semantic Segmentation




Semantic segmentation

building

tree

" Atask of simultaneous object segmentation and recognition

* And we try to learn it weakly supervised — with seeing only image “tags” during training;
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Constrained clustering
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Constrained clustering
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Constrained clustering
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Constrained clustering

£ ({yf}; ;9) = D (w (yfjw§;9) +W(yf;5§j))
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Unary potential: appearance likelihood for a superpixel

Constrained clustering

xfEIj;IjE’r

lb (yaajag) — _1ngy (3379)



Unary potential: a superpixel can only take a
label given to the image

Constrained clustering




Constrained clustering

5({93}, ,9): 3 (ub(yfgar§:9)+w(y§:1?))
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" We can solve it using modified k-means (depending on an appearance model);
" Does not model all the dependencies in the data;

" Unregularized.



Pairwise potential within an image:
encourages label smootheness
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i We can solve it using
+ E ¢ (yi s Yir s L'y Ly ) iterative minimization;
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Pairwise potential between images:
similar superpixels — same label

5({@/3}; ;9)= 2 (w(yfjwfa9)+ﬂ(y§;3§j))
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Building MIM: connect which images/superpixels ?

Data-driven construction of a sparse set of connections

Connect each superpixel to
* Kk nearest appearance neighbors in other images sharing labels
* <= p superpixels in one image (variety)



Why do MI potentials make any sense?

" Anearest neighbour graph can be
interpreted as a model for a manifold, on
which data lives;

" The pairwise potential penalizes cutting
through the manifolds (areas of high

density): _ -
A very similar regularizer is used in TR
semi-supervised learning and L >

dimensionality reduction;
In a certain sense, it “unrolls” the

manifolds; In essence, we penalize labelling for

There is a relation to graph Laplacians changing on the manifolds formed by

and Laplace-Beltrami operator: superpixels from images that share a
label

*Image courtesy of K.Q. Weinberger
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Inference: get y given ©

Energy minimization

MIM potentials are multi-label
submodular

— alpha-expansion
[Boykov et al PAMI 2011]




Learning: gety and ©
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"  Problem of minimizing the energy is mixed continuous/discrete

" Energyis
Convey, if labeling y if fixed;
Metric, if 6 is fixed;

" lterative minimization:
Init: set y to random labels fulfilling image label constraints
Fix y, train 0 in standard ‘supervised’ maximum likelihood
Fix 8, use alpha-expansion (previous slide);



MIM (as of ICCV'11)

What is missing?
A4 o o
€ ({yf}; ;9) = (w (yfjwﬁjf)) + W(yﬁij))
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Generalized MIM




Each potential 0 a different metric of
similarity (colour, SIFT, texture, e.t.c.)

Generalized MIM
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New structure parameters vector a
controls the regularization

Generalized MIM

e(tylhed)=an > (v(v0l.0) +7lyl,Y7)) +
/ asg eli;lier
Balance unary vs pairwise Balance different pairwise potentials
L 4 , )
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GMIM - questions
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= |f alpha is fixed, we know what to do
lterative minimization from ICCV'11

= But how to choose a?

Since it controls the strength and the form of regularization, we cannot use energy
itself to select it;
Trivial solution = minimal regularization:
a 0=1;
Our problem is weakly supervised, therefore we can't use cross-validation;



Model selection for GMIM
e({wh ) =ao > (v (w.al0) 7l 7))+

ngIj;Ij eT

K
(1—060)20% Z ¢k (ygayg’aicgaagg’)
k=1

Y
(yi.ul, JEE,

" Model selection view:
Every value of a defines a model;
Space of all a span a family of models;

" We wish to select a model out the family:
We need a meta-principle to score models;
We need a practical search algorithm to find the one with the best score;



Labeling inferred and labelling
Expected agreement A(«) predicted should agree!
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Learning and inference algorithm: Prediction algorithm:
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Labeling inferred and labelling
Expected agreement A(«) predicted should agree!
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Learn

" a lives in a multidimensional space (~7);
" No gradients available;
" How do we search for best a?



Bayesian optimization with GP

Model expected agreement as GP: Next point 1 Upper Confidence Bound:
A(@) ~ GP (m(a), k(e &) a1 = (1) + Bof (1)

With a Gaussian kernel:

baa!) = yexp (e — ') ding(v) (o - o))

Srinivas et al. ICML 10 *Image courtesy of A. Krause



Prediction with MIM

Test image Retrieved, similar training images




Prediction with MIM

Test image Retrieved, similar training images

. B,C . A,B . A.C
u(yt) = —log P (3 € Y?) ﬁ
. D.F.G .G,E . GEA

Shotton et al. CVPR 08; Guillaumin et al ICCV 09




Prediction with MIM

Test image




Prediction with MIM

Training images




Prediction with MIM




Appearance models via ERHF
Extremely Randomized Hashing Forest

= Requirements: v eR é é

Fast in training — we re-estimate \ /
them iteratively many-many times O
during training; \b[4] =0 b[5)] C{
Leverage diverse features — visual O O

. b[1] = 0 bl6] =0
classes are very varied in
appearance;

2] =1 B3] =0 7]—0 b[8
b=(0,1,0,0,0,0,0,1)

" Extremely Randomized Hashing
Forest representation

A forest of decision trees;
Built upon any feature set;

Every predicate in atree is a
hashing function;

Naive Bayes:

3 (sparse) matrix multiplications to
retrain the model;

Easy to weight data (according to
amount of pixels in the superpixel;



Implementation details

" Features for similarity metrics

3 different features; SIFT
Over superpixel and dilated area; Colour
: : Texture
Chi-square distance; X2
2x3=6 pairwise potentials.
Superpixel features for appearance T—
models
SIFT
Colour
Only histogram features (baseline) Texture
1248 Position
GIST
ERHF with a full set Bounzing bex

etc.
3115 ERHF

J. Tighe and S. Lazebnik ECCV 10




GMIM vs state of the art

Quality metric:

Average per class accuracy

4)

Method [1] [2] [3] [4] GMIM
supervision full full full weak |weak
average acc. 13 24 29 14 21
Data - LabelMe subset of [2]: 1) J. Shotton, J.Winn, C. Rother, and A. Criminisi, “Textonboost:
_ Joint appearance, shape and context modeling for multi-class
2.5K images, 33 classes; object recognition and segmentation,” in ECCV, 2006.
2) C. Liu, J. Yuen, and A. Torralba, “Nonparametric scene
parsing: label transfer via dense scene alignment.,” in CVPR,
2009.
3) J.Tighe and S. Lazebnik, “Superparsing: Scalable

nonparametric image parsing with superpixels,” in ECCV,
2010.

MIM of ICCV'11



Evaluation of components

ERHF Histograms
Setup Av. acc. Setup Av. acc.
MEA 21 MEA 19
average 6 average 5
best™ a 21 best* a 20
best™ ap + average 17 best® ap + average 17

" MEA - Maximum Expected Agreement

Full framework
= Baselines:

average —seta to [0.5 1/k ... 1/k];

*best a — grid search, looking at training set pixel labels;

*best a_0 + average — grid search for best a_0 looking at training set pixel labels and
average for the rest;

ERHF vs set of histogram features;



Pictures!

Ground truth GMIM result Average Best oo + average




Discussion: Framework
eyt o) =a0 > (v (v al0) +a@l )+
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" Ingredients:
Regularizer form;
Criterion to select regularizer's strength and structure;
Way to search for the best one;
Fast and rich appearance models;



Discussion: Framework extensions
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" Higher order potentials (or whichever buzzword you like)
More constraints from bag labels;

Hierarchical structure of superpixels/regions;
— Can do, if you can do the inference;

" Pimp up appearance models

As long as you can train them;



Discussion: Model selection

Fast to evaluate

| have run it for ~100 parameter values now,

but more in the future;

—— Prediction accuracy

. - - - Expected agreement
Model-agnostic (better be) 0.12 .

Calculating probabilities or anything like itisa  °

computational nightmare; 0.08 |

0.06 I .

Changing model shouldn't change the
0.04 _

validaton;, —  keaaa
002 | | | | | | | |

Best — just work with strings of labels | ' | o,

inferred/predicted;

VMI by Alberto could work!

No i.i.d. Assumptions

Removing i.i.d. is in the basis of our model



Discussion: Optimization

-
-
-

= Should be black-box

We have no gradient information;

o
(s}
\
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~ (o]
T T

" Should be hon myopic - - - .AdaGP-UCB

GP-UCB

random search

Local extremums are there and they are
plenty;

= Should be parallelizable

o
o
T

o
(&)]
I

o
~
:

found optimum / global optimum

50 100 150
queried points

We have clusters, why not use them?

o

= GPs work fine. Nice to haves:
Show consistency;

Maybe “better than grid search” bound
like this:
Vo>03n (S, f):Vx":m'=min,_s....vs f(x)An=...

Given some reasonable assumptions
of function smoothness



Future work

" Largestest scale
Millions of images, hundreds of classes;
|deas — scaling by abstraction, peace-wise optimization;

" Transfer learning

If we know how the bike looks, learning how the motorbike looks
should be easier;

" |ntegrate any source of supervision
Bounding boxes, some pixel labels, unlabelled data — all good!



Results

Image /

ground truth

MIM results

Image /

ground truth

MIM results
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Image /

MIM results
ground truth
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ICCV'11 results

LabelMe
Method

J. Shotton, J. Winn, C. Rother, and A. Criminisi. “TextonBoost: Joint appearance, shape and context modeling
for multi-class object recognition and segmentation”. In ECCV 2006.

C. Liu, J. Yuen, A. Torralba. “Nonparametric scene parsing: label transfer via dense scene alignment”. In
CVPR, 2009.

MIM
MIM

MSRC21

J. Shotton, J. Winn, C. Rother, and A. Criminisi. “TextonBoost: Joint appearance, shape and context modeling
for multi-class object recognition and segmentation”. In ECCV 2006.

J. Shotton, M. Johnson, and R. Cipolla. “Semantic texton forests for image categorization and segmentation”.
In CVPR, 2008.

L’'ubor Ladick’y, Chris Russell and Pushmeet Kohli “Associative Hierarchical CRFs for Object Class Image
Segmentation” In CVPR 2009.

J. Verbeek and B. Triggs. “Region classification with markov field aspect models”. In CVPR, 2007
MIM
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