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Classical learning framework

We consider an input space X C RY and an output space ).

Hypothesis : Pairs of examples (x,y) € X X Y are
identically and independently distributed (i.i.d) with
respect to a fixed but unknown distribution D.

Sampling : We observe a sequence of m pairs of examples
(Xi, i) generated i.i.d with respect to D.

Goal : Find a function g : X — Y, which belongs to a class
of functions G, which predicts the output y of a new
observation x such that :

P(g(x) # y) is the lowest possible.
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New challenges with Emerging
Applications

We consider an input space X C R? (d >> 1) and an
output space Y, |Y| >> 1.

Pairs of examples (x,v) € X X YV are ,dgg%gat”v and
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Large-scale classification : power law
distribution of classes

Collection K d
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g Multiclass classification approaches
M

O Uncombined approaches, i.e. MSVM or MLP. The
number of parameters, M, is at least O(K X d).

L Combined approaches based on binary
classification :
0 One-Vs-one - M > O(K? X d)
0O One-Vs-Rest - M > O(K x d)

U For K >>1 and d >> 1 traditional approaches do
not pass the scale.



7/21

-
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U Motivation

O Learning objective and reduction strategy

U Experimental results

) Conclusion
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r Outline
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Learning objective

U Large-scale multiclass classification,
0 Hypothesis : Observations x¥ = (x,y) € X X Y are
i.i.d with respect to a distribution D,
0 For aclass of H={h: X xY — R}, a ranking
instanstaneous loss h € ‘H over an example x¥ by :

1
e(h' Xy) e —K — 1 Z ]lh(X-V)Sh(X-V/)'
y'en{v}

0 The aim is to find a function h € ‘H that minimizes
the generalization error L(h) :

L(h) = Ex.~p [e(h,x)].

0 Empirical error of a function h € H over a training
— Yi H
set S=(x'), is
1 m
Lm(h, S) = E E e(h, X?/f)

i=1
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Reduction strategy

1 Consider the empirical loss

Lm(h, S) = —Z Z L hoy<nee’y

i=1 y'e\{yi}

Ly
I ‘ Vig(Zi)<0

~”

Ly (9. T(S))

where n = m(K — 1), Z; is a pair of couples
costituted by a couple of example and its class and
the couple corresponding to the example and
another class, y; = 1 if the first couple in Z; is the
true couple and —1 otherwise, and

g(x¥, x¥') = h(x¥) — h(x*").
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Reduction strategy
for the class of linear functions

Input: Labeled training set S = (x¥*)™, ;
A binary classifier A ;
Initialize
T(S)«0;
fori=1..mdo
for k = 1..K do
if y; > k then
| T(S) & {(B(x) — B(xF), +1)}
end
if y; < k then
| T(8) + {(o(xF) - 2(x}"), -1)}
end
end

end
Learn A on T'(S)
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| Reduction strategy
for the class of linear functions

m

Input: Labeled training set S = (x¥*)™, ;
A binary classifier A ;
Initialize
T(S)+0;
fori = 1..m do
for k = 1..K do
if y; > k then
| T(8) e {(B(xV) - B(xE), +1)}
end
if y; < k then
| T(8) + {(D(xF) — 2(x), ~1)}
end
end

end
Learn A on T'(S)

Problems :
0 How to define ®(x¥),
1 Consistency of the ERM principle with interdependant data.
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Consistency of the ERM principle with
interdependant data

1 Different statistical tools for extending concentration
inequalities to the case of interdependent data,

0 tools based on colorable graphs proposed by (Janson,
2004) 1.

(xt ) (g, xd)

T(S) |(x3,x3) (x3,x3)

(3, x4) (x5, %3)

(k) hxd) ()

ol (i

1. S. Janson. Large deviations for sums of partly dependent random
variables. Random Structures and Algorithms, 24(3) :234—248, 2004.
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Theorem (Bikash et al. 2015)

Let 8 = (x"), € (X x Y)™ be a training set constituted of m examples
generated i.i.d. with respect to a probability distribution D overX X Y and
T(S)=((Z:i. 7)), € (2 x{—=1,1})" the transformed set obtained with
application T. Let k: Z — R by a PSD kernel, and ¢ : X x Y — H the

associated mapping function. For all 1 > ¢ > 0, and all
agw € Gg = {x— (w, ®(x)) | ||w]|| < B} with probability at least (1 — §)
over T(S) we have then :

2B6(T(S)) In(3)
LT <el(gw, T(S 3 1
(9w) < €5 (9w TSN + == +31/ 2 ()
where €, (gW, T(S)) E L(Vigw(Z;)) with a surrogate Hinge loss

i=1
Lt~ min(1, max(1 —t,0)), L7 (9w) = Ex(s)[L] (9w, T(S))] et

B(T(S)) = /> 1, de(Zi) with

de(x”, X)) = k(x, X)) + k(x”, x) — 2k(x¥, x*)
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Key Features of Algorithm

Data dependent bound :

If the feature representation of (x,y) pairs is
independent of original dimension, then :
&(T(S )) < \/n X Constant ~

Vm x ( ) X Constant and the convergence

rate is of order O(\/—m).

Non-trivial joint feature representation
(example-class pair)

Same for any number of class
Same parameter vector for all classes
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Outline

1 Experimental results

a
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jz Feature representation ¢(x”)
)Y

Features

1. Z In(1 + ye) 2. Z In(1+‘ls—‘i)

teynx teynx

3. > L > @+ 2t

teynx teynx |y|

I
5.0 |n(1+|{/v—f|.1t) 6. |n(1+ﬁ.§‘i)

teynx

7> 1 8. > £y

teynx teynx
9. di(x) 10. dh(XY)

>

U Xt : number of occurrences of terme t in
document x,
O VY : Number of distinct terms in S,

a yr = ery Xt, ly| = Zteyytv St = ers Xt,

Is = Ztev St.
O I+ : idf of the terme t,
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g Experimental results on
= text classification

Collection K d m Test size

DMOZ 7500 594158 394756 104263
WIKIPEDIA 7500 346299 456886 81262

K x d = O(10°)

U Random samples of 100, 500, 1000, 3000, 5000
and 7500
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i< Experimental Setup
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Implementation and comparison :

L SVM with linear kernel as binary classification
algorithm

U Value of C chosen by cross-validation
O Comparison with OVA, OVO, M-SVM, LogT
Performance Evaluation :

L Accuracy : Correctly classified examples in test
dataset

U Macro F-Measure : Harmonic mean of precision
and recall
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'_; Experimental Results

Y Result for 7500 class :

DMOZ-7500

Wikipedia-7500

Acc. MaF; N,

Acc. MaF; N,

mRb  .479% 352 495
OvVA  .549 282t 379
LogT .311% 096 .194

437V 378 551
484 348+ 489
231+ 1518 287

0 OVO and M-SVM did not pass the scale for 7500

classes

U Nc : Proportion of classes for which at leaset one

TP document found

- mRb covers 6-9.5% classes than OVA ( 500 - 700

classes)
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! #£ of Classes Vs. Macro F-Measure
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I #£ of Classes Vs. Macro F-Measure
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Conclusion

.

0 A new method of large-scale multiclass
classification based on reduction of multiclass
classification to binary classification.

U Efficiency of deduced algorithm comparable or
better than the state of the art multiclass
classification approaches.

Massih-Reza Amini-Nicolas Usunier

Learning with
Partially Labeled and

| Interdependent Data




