Text Sentiment Classification
with Commitees of Convolutional Deep Neural Networks

Andrey Ignatov

Abstract—Regarding the immense traffic within social net-
works, it is, without using automated evaluations, impossible to
get a justified estimate about the opinion of the masses towards
certain topics.

Nevertheless, the task of sentiment analysis appears usefull for
various different applications from advertisement to opinion
detection for parts of the society.

After embedding the words into a word vectorspace, the
obvious way to classify them is to use a classical neural
network. In the following we use multiple well known strategies
as a baseline. These will be compared to the application of
convolutional neural networks. Another step further, we not
only use the more advanced strategies, but we also combine
multiple models to built committees. A closer look is taken,
on whether the performance of the commitee outperformes a
single better trained model. (cite Bishop Chapter 14).

The used dataset for out application is a set of about 2,5 million
tweets, labeled to whether they are positive or negative. As a
consequence from of our observatios it becomes obvious, that a
single well trained network outperformes a majority vote over
multiple networks.

I. INTRODUCTION

Sentiment analysis of texts is a field of wide interest.
Especially for the advertisement industry, it is of great value
to be capable of analysing the sentiment of tendentially small
messages appearing within social networks. In this paper, we
apply the technique of convolutional neural networks to the
field of sentiment analysis. While convolutional networks
are the defacto standard in Computer Vision tasks, their
application in natural language processing has been analysed
less intensively.

During our analysis we use convolutional neural networks
in combination with generated word vectors generated in
three different ways. After an evaluation of the precision
per network we afterwards run a commitee approach fol-
lowing the majority vote. All our results are compared to
classical approaches using BatchOfWords and word average
wordvectors per sentence and classical neural networks.

It turns out that considerable improvement can be archieved
over naive sentiment analysis approaches.

II. MODELS AND METHODS

The strategy for determining the sentiment of statements
can be devided into two separate parts. In a first step it
is necessary to translate the sentences into a model. This
is a word vector space is most of our cases. (Reference
for wordembeddings) This word-vector space later gives

the opportunity to operate on the words as coordinates in
a space, where the position in space is derived from the
meaning of certain word. Our approach for this is described
in the first part of this section. Another model used within
one our baseline algorithms is the BagOfWord model. This
simplifying representation only keeps the multiplicity of
certain words, but regards neither wordorder nor grammar.
In a second step, the modeled sentences are fed into a form
of neural network, which acts as a classifier for the two
sentiment classes “’negative” and “positiv”.

A. Using Wordembeddings

Getting the meaning for a sentences is a overlying task,
stacked onto the anaysis of single words. This analysis
for single words is the core of what is described as word
embeddings. Words are embedded into a vector space what
allowes it to look onto the words positions relative to each
other. This model itself offers powerfull functionality. There
are multiple ways of determining word vectors. Word vectors
we use are based upon the following two approaches:

1) Word2Vec: (Reference) This is a... Description follow-
ing
2) Glove: (Reference) This is a... Description following
To put it all together, in our analysis we compare three dffer-
ent sets of word vectors, that base on the above mentioned
generation schemes and have a different dimensionality
each:

1) First of all we use own vectors generated by Word2Vec
In contrast to the approach in [1] we use own trained
word vectors. We voted for this, since the analysed
twitter messages, tendentially use a different vocabular
than the one used within every-day language. Using
python as a project language the gensim-package
(Reference) contains a valuable implementation.

2) Pre processed word embeddings of dimensionality
300 can be obtained from google (Reference). These
vectors were trained on everyday langage.

3) Pre processed word embeddings with a dimensionality
of 200, which has been especially trained on twitter
data. (Reference Standord)

The analysed data is preprocessing in a way proposed by
the same team of Stanford (Reference to script). The core
of this step is to replace certain widespread word patterns by
special tokens. This procedure includes numbers, emoticons

or the appreance of special word styles like repetition of
letters in the end of words. The result is a reduced wordset
with less sepcial cases.

B. Putting the Word Vectors in Shape

Before we can process the data further, we have to bring
it into a form, that can be processed by the neural netwok
of choice. Both, the normal and the convolutional neural
network handle differrent kinds of inputs, sothat a separate
layout of the input data is necessary.

For the common neural network used as a baseline, we only
need a single vector as input, sothat each of the vectors
dimensionality can be used as a differnt input to the neural
network. The obvious strategy to get a single word vector for
whole sentences is to build the average out of the avaiable
word vectors for the words in the sentence.

In contrast to this, the convolutional neural network is
capable to handle the input data as a whole. , it is necessary
to think about the layout, in which one wants to provide the
data. We stack all the word vectors of one sentence in behind
each other. Like this we get a matrix, which is basically the
replacesment of our image.

C. Applying a Convolutional Neural Network

The fundamental idea leading to the application of a
convolutional neural network, is that one can postulate a
inherent locality of the matrix created in the step above.

Figure 1. Architecture of the neural network.

There are multiple interesting hyperparameters for the
cnn, which might influence the outcome. On the one hand
the size of the filters and the their stride can be adapted.
Stride means the stepsize of the sliding window, with
which it is moved further. This can be used to configure
whether multiple filters overlap or not. In the following both
approaches have been tested.

For our implementation tensorflow (reference) has been
used. As a nice sideeffect, this gave the possibility of easy
visualization using tensorboard shown in the text paragraph.

III. RESULTS

In following we give the results of our concrete imple-
mentation. First we argue about the time, that was needed

Senlence

J 7 1
P Fl G i
{ |
1 . 1
| H
1 I
1 1 1
1 L — e ——
1 1]
1 i
| 1
{ {4
i 111
Lp— s - — .'l
——— ...I:'i'lt__-_,..T.._-'
ul
=p
E il o — —
=]
&
&
k=
&
=
Figure 2. Application of the neural network on the sentences of word
embeddings.

to train the different networks to the same level. Afterall
50k learning steps have been performed. The difference in
dimenisonality of the word embeddings led to significant
differences in the training performance.

In a second step we compare the results of the various
approaches. The Baseline algorithms, the results of the
CNNs and the result of the commiteee are described each
in a separate paragraph.

A. Training the Neural Networks

Using word vectors of dsifferent dimensionality and
different background, differences in performance can be
expected from the beginning. Fig In the following we
give the results of our approach. We compare the results
of our convolutional neural network to the plain results,
achieved by only using the wordembeddings without further
processing.

For the plain approaches using the wordembeddings, there
is of course no training necessary. Although the training has
been done on a cluster only an extended amount of memory
has been used. Due to issues about the parallelization, the
scaling beyond 3 processor cores did not lead to improved
performance (Parallel perfromance determined by using the
benchmark provided (reference auf den Tensorflow thread)).
Therefore the training took a long time.

Word Vectors

Dimensionality | Time Consumption |

Common neural network averaged 100 M7

Self computed enbeddings 100 6:00h

Standford twitter embeddings general 200 0:50h

Google general enbeddings 300 16h
Table 1

TIME CONSUMPTION FOR TRAINING THE NEURAL NETWORK.

Figure 3. Increasing accuracy during learning.

Another difference between the 3 different sets of word
vectors, was the amount of words which have been skipped
during the analysis. Beeing trained on the given dataset, our
own word embedding did not have exceptions of unknown
words. In contrast to this the google dataset faced an overall
amount of ??? (Insert after training ran through) words,
that could not be found in the word index. Using the
standford pretrained dataset this effect was less drastic, since
a preprocessing step was included and the words vectors
have been originally trained on twitter data either.

B. Baseline

The baseline approach using a neural network on a
bag of words model and the averaged word vector per
tweet already gave usable results. While the Bag of words
model yielded a accuracy of. 80.40%, the averaged word
embeddings lead to a final precision of 80,32%.

C. Results of the Convolutional Neural Network

One can expect better results from the CNN already from
the fact, that it uses more informaton from the beginning.
This expectation was validated during the test runs. Using
the three different word embeddings, described above, the
precision lay always above 85%. A comparison of the grad-
ual increase in accuracy between different models during the
training can be seen in reffig:accuracy. (Maybe say one or
two sentences about the outcome).

D. Results of the Commitee

In a last step, the predictions of the three different
concolutional neural networks have been combined to form
a mazority vote. Using this prediction instead of the predic-
tion of a single neural network improved the results again
slightly. (Give the real results)

IV. DISCUSSION

Since it can be expected the learning has not been pushed
to the limit, an extended learning procedure should lead to
improved results. At this, it would sbe of course beneficial
to train the neural network on a graphics card, to profit
from a considerable increase in performance. The good
results of our approach give space for assumptions, that more
sophisticated architectures for deep learning nets might lead
to even better results.

Observing convolutional neural networks only in this
approach, it could be interesting to look onto whole differ-
ent deep learning networks like recurrent neural networks
(reference) or recursive neural tensor nets (reference).

V. SUMMARY

In the end, the application of convolutional neural net-
works yielded good result. The baselines, using plain neural
network classification on top of an average word vector per
sentence, have been clearly outperformed by already a single
convolutional neural network. The combination of multiple
trained networks, tried in a second step, was capable to even
improve the results.

REFERENCES

[1] C. N. dos Santos and M. Gatti, “Deep convolutional neural
networks for sentiment analysis of short texts.” in COLING,
2014, pp. 69-78.

