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Motivation for ensembles

Consider M classi�ers f1(x), ...fM(x), performing binary
classi�cation.

Let ξ1, ...ξM denote indicators of mistakes by f1, ...fM on
particular observation x
Suppose ξ1, ...ξM are independent binomial variables with
P(ξi = 1) = p
Then Eξi = p, Var [ξi ] = p(1− p)
Consider F (x) be aggregating classi�er, assigning x to the
class with maximum votes among f1(x), ...fM(x).
Consider

η =
ξ1 + ...+ ξM

M
Probability of mistake = probability that majority of ξ1, ...ξM
are ones = P(η > 0.5).

P(η > 0.5)→ 0 as M →∞ because Eη = p,Var [η] = p(1−p)
M .
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Linear ensembles

Linear ensemble:

F (x) = f0(x) + c1h1(x) + ...+ cMhM(x)

Regression: ŷ(x) = F (x)
Binary classi�cation: score(y |x) = F (x), ŷ(x) = signF (x)

Notation: h1(x), ...hM(x) are called base learners, weak

learners, base models.

Too expensive to optimize f0(x), h1(x), ...hM(x) and c1, ...cM
jointly for large M.

Idea: optimize f0(x) and then each pair (hm(x), cm) greedily.

After ensemble is built we can �ne-tune c1, ...cM by �tting
features f0(x), h1(x), ...hM(x) with linear regression/classi�er.
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Forward stagewise additive modeling (FSAM)

Input: training dataset (xi , yi ), i = 1, 2, ...N; loss function L(f , y),
general form of �base learner� h(x |γ) (dependent from parameter
γ) and the number M of successive additive approximations.

1 Fit initial approximation f0(x) = argminf
∑N

i=1
L(f (xi ), yi )

2 For m = 1, 2, ...M:

1 �nd next best classi�er

(cm, hm) = argmin
h,c

N∑
i=1

L(fm−1(xi ) + ch(xi ), yi )

2 set
fm(x) = fm−1(x) + cmhm(x)

Output: approximation function
fM(x) = f0(x) +

∑M
m=1

cmhm(x)
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Comments on FSAM

Number of steps M should be determined by performance on
validation set.

Step 1 need not be solved accurately, since its mistakes are
expected to be corrected by future base learners.

we can take f0(x) = argminβ∈R
∑N

i=1
L(β, yi ) or simply

f0(x) ≡ 0.

By similar reasoning there is no need to solve 2.1 accurately

typically very simple base learners are used such as trees of
depth=1,2,3.

For some loss functions, such as L(y , f (x)) = e−yf (x) we can
solve FSAM explicitly.

For general loss functions gradient boosting scheme should be
used.
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Adaboost
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Adaboost

Adaboost (discrete version): assumptions

binary classi�cation task y ∈ {+1,−1}
family of base classi�ers h(x) = h(x |γ) where γ is some �tted
parametrization.
h(x) ∈ {+1,−1}
classi�cation is performed with
ŷ = sign{f0(x) + c1f1(x) + ...+ cM fM(x)}
optimized loss is L(y , f (x)) = e−yf (x)

FSAM is applied
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Adaboost

Adaboost (discrete version): algorithm

Input: training dataset (xi , yi ), i = 1, 2, ...N; number of additive
weak classi�ers M, a family of weak classi�ers h(x) ∈ {+1,−1},
trainable on weighted datasets.

1 Initialize observation weights wi = 1/n, i = 1, 2, ...n.
2 for m = 1, 2, ...M:

1 �t hm(x) to training data using weights wi

2 compute weighted misclassi�cation rate:

Em =

∑N
i=1

wi I[hm(x) 6= yi ]∑N
i=1

wi

3 if EM > 0.5 or EM = 0: terminate procedure.
4 compute cm = 1

2
ln ((1− Em)/Em)

5 increase all weights, where misclassi�cation with hm(x) was
made:

wi ← wie
2cm , i ∈ {i : hm(xi ) 6= yi}

Output: composite classi�er f (x) = sign
(∑M

m=1
cmh

m(x)
)
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Adaboost

Adaboost derivation

Set initial approximation, typically f0(x) ≡ 0.
Apply FSAM for m = 1, 2, ...M:

(cm, h
m) = arg min

cm,hm

N∑
i=1

L(fm−1(xi ) + cmh
m(x), yi )

= arg min
cm,hm

N∑
i=1

e−yi fm−1(xi )e−cmyih
m(x)

= arg min
cm,hm

N∑
i=1

wm
i e−cmyih

m(xi ), wm
i = e−yi fm−1(xi )
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Adaboost

Adaboost derivation

N∑
i=1

wm
i e−cmyih

m(xi ) =
∑

i :hm(xi )=yi

wm
i e−cm +

∑
i :hm(xi )6=yi

wm
i ecm

= e−cm
∑

i :hm(xi )=yi

wm
i + ecm

∑
i :hm(xi )6=yi

wm
i

= ecm
∑

i :hm(xi ) 6=yi

wm
i + e−cm

N∑
i=1

wm
i − e−cm

∑
i :hm(xi )6=yi

wm
i

= e−cm
∑
i

wm
i + (ecm − e−cm)

∑
i :hm(xi )6=yi

wm
i

Since cm ≥ 0 hm(x) should be found from

hm(xi ) = argmin
h

N∑
i=1

wm
i I[h(xi ) 6= yi ]
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Adaboost

Adaboost derivation

Denote F (cm) =
∑n

i=1
wm
i exp(−cmyihm(xi )). Then

∂F (cm)

∂cm
= −

N∑
i=1

wm
i e−cmyih

m(xi )yih
m(xi ) = 0

−
∑

i :hm(xi )=yi

wm
i e−cm +

∑
i :hm(xi )6=yi

wm
i ecm = 0

e2cm =

∑
i :hm(xi )=yi

wm
i∑

i :hm(xi ) 6=yi
wm
i

cm =
1

2
ln

(∑
i :hm(xi )=yi

wm
i

)
/
(∑N

i=1
wm
i

)
(∑

i :hm(xi ) 6=yi
wm
i

)
/
(∑N

i=1
wm
i

) =
1

2
ln

1− Em

Em
,

where Em :=

∑N
i=1

wm
i I[hm(xi ) 6= yi ]∑N

i=1
wm
i11/28
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Adaboost

Adaboost derivation

Weights recalculation:

wm+1

i
df
= e−yi fm(xi ) = e−yi fm−1(xi )e−yicmh

m(xi )

Noting that −yihm(xi ) = 2I[hm(xi ) 6= yi ]− 1, we can rewrite:

wm+1

i = e−yi fm−1(xi )ecm(2I[h
m(xi )6=yi ]−1) =

= wm
i e2cmI[h

m(xi )6=yi ]e−cm ∝ wm
i e2cmI[h

m(xi ) 6=yi ]

Comments:

We can remove common constants from weights.

wm+1

i = wm
i for correctly classi�ed objects by hm(x).

wm+1

i = wm
i e2cm for incorrectly classi�ed objects by hm(x).

so later classi�ers will pay more attention to them
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Gradient boosting
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Gradient boosting

Motivation

Problem: For general loss function L FSAM cannot be solved
explicitly

Analogy with function minimization: when we can't �nd
optimum explicitly we use numerical methods

Gradient boosting: numerical method for iterative loss
minimization
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Gradient boosting

Gradient descent algorithm

F (w)→ min
w
, w ∈ RN

Gradient descend algorithm:

INPUT:
η-parameter, controlling the speed of convergence
M-number of iterations

ALGORITHM:
initialize w
for m = 1, 2, ...M:

∆w = ∂F (w)
∂w

w = w − η∆w
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Gradient boosting

Modi�ed gradient descent algorithm

INPUT:
M-number of iterations

ALGORITHM:
initialize w
for m = 1, 2, ...M:

∆w = ∂F (w)
∂w

c∗ = argminc F (w − c∆w)
w = w − c∗∆w

16/28



Boosting - Victor Kitov

Gradient boosting

Gradient boosting

Now consider F (f (x1), ...f (xN)) =
∑N

n=1
L (f (xn), yn)

Gradient descent performs pointwise optimization, but we need
generalization, so we optimize in space of functions.

Gradient boosting implements modi�ed gradient descent in
function space:

�nd zi = −∂L(r ,yi )∂r |r=f m−1(xi )

�t base learner hm(x) to {(xi , zi )}Ni=1
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Gradient boosting

Gradient boosting

Input: training dataset (xi , yi ), i = 1, 2, ...N; loss function L(f , y)
and the number M of successive additive approximations.

1 Fit initial approximation f0(x) (might be taken f0(x) ≡ 0)

2 For each step m = 1, 2, ...M:

1 calculate derivatives zi = −∂L(r ,yi )∂r |r=f m−1(xi )

2 �t hm to {(xi , zi )}Ni=1
, for example by solving

N∑
n=1

(hm(xn)− zn)
2 → min

hm

3 solve univariate optimization problem:

N∑
i=1

L (fm−1(xi ) + cmhm(xi ), yi )→ min
cm∈R+

4 set fm(x) = fm−1(x) + cmhm(x)

Output: approximation function fM(x) = f0(x) +
∑M

m=1
cmhm(x)
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Gradient boosting

Gradient boosting: examples

In gradient boosting

N∑
n=1

(
hm(xn)−

(
−∂L(r , y)

∂r
|r=f m−1(xn)

))2

→ min
hm

Speci�c cases:

L = 1

2
(r − y)2 => −∂L

∂r = −(r − y) = (y − r)

hm(x) is �tted to compensate regression errors (y − fm−1(x))

L = [−ry ]+ => −∂L
∂r =

{
0, ry > 0

y , ry < 0

hm(x) is �tted to yI[f (x)y < 0]
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Boosting extensions

Gradient boosting of trees

Input: training dataset (xi , yi ), i = 1, 2, ...N; loss function L(f , y)
and the number M of successive additive approximations.

1 Fit constant initial approximation f0(x):
f0(x) = argminγ

∑N
i=1
L(γ, yi )

2 For each step m = 1, 2, ...M:

1 calculate derivatives zi = −∂L(r ,y)∂r |r=f m−1(x)

2 �t regression tree hm on {(xi , zi )}Ni=1
with some loss function,

get leaf regions {Rm
j }

Jm
j=1

.
3 for each terminal region Rm

j , j = 1, 2, ...Jm solve univariate
optimization problem:

γmj = argmin
γ

∑
xi∈Rm

j

L(fm−1(xi ) + γ, yi )

4 update fm(x) = fm−1(x) +
∑Jm

j=1
γmj I[x ∈ Rm

j ]

Output: approximation function fM(x)
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Boosting extensions

Modi�cation of boosting for trees

Compared to �rst method of gradient boosting, boosting of
regression trees �nds additive coe�cients individually for each
terminal region Rm

j , not globally for the whole classi�er hm(x).

This is done to increase accuracy: forward stagewise algorithm
cannot be applied to �nd Rm

j , but it can be applied to �nd
γmj , because second task is solvable for arbitrary L.

Max leaves J

interaction between no more than J − 1 terms
usually 4 ≤ J ≤ 8

M controls under�tting-over�tting tradeo� and selected using
validation set
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Boosting extensions

Shrinkage & subsampling

Shrinkage of general GB, step (d):

fm(x) = fm−1(x) + νcmhm(x)

Shrinkage of trees GB, step (d):

fm(x) = fm−1(x) + ν

Jm∑
j=1

γjmI[x ∈ Rjm]

Comments:

ν ∈ (0, 1]
ν � =⇒ M �

Subsampling

increases speed of �tting
may increase accuracy
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Boosting extensions

Linear loss function approximation

Consider sample (x , y).

L(f (x) + h(x), y) ≈ L(f (x), y) + h(x)
∂L(r , y)
∂r

∣∣∣∣
r=f (x)

=> h(x) should be �tted to − ∂L(r ,y)
∂r

∣∣∣
r=f (x)

.
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Boosting extensions

Newton method of optimization

Suppose we want F (w)→ minw
Let w∗ = argminw F (w)
Then F ′(w∗) = 0

Taylor expansion of F ′(w) around w to w∗:

F ′(w∗) = 0 = F ′(w) + F ′′(w)(w∗ − w) + o(‖w − w∗‖)
It follows that

w∗ − w = −
[
F
′′
(w)
]−1

F ′(w) + o(‖w − w∗‖)

Iterative scheme for minimization:

w ← w −
[
F
′′
(w)
]−1

F ′(w)

it is scaled gradient descent
speed of convergence faster (uses quadratic approximation in
Taylor expansion)
converges in one step for quadratic F (w).
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Boosting extensions

Quadratic loss function approximation

L(f (x) + h(x), y) ≈

L(f (x), y) + h(x)
∂L(r , y)
∂r

∣∣∣∣
r=f (x)

+
1

2
(h(x))2

∂2L(r , y)
∂r2

∣∣∣∣
r=f (x)

=

1

2

∂2L(r , y)
∂r2

∣∣∣∣
r=f (x)

h(x) +

∂L(r ,y)
∂r

∣∣∣
r=f (x)

∂2L(r ,y)
∂r2

∣∣∣
r=f (x)


2

+ const(h(x))

=> h(x) should be �tted to − ∂L(r ,y)
∂r

∣∣∣
r=f (x)

/ ∂2L(r ,y)
∂r2

∣∣∣
r=f (x)

with

weight ∂2L(r ,y)
∂r2

∣∣∣
r=f (x)
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Boosting extensions

Case of C ≥ 3 classes

Can �t C independent boostings {fy (x)}Cy=1
(one vs. all

scheme)

ŷ(x) = argmaxy fy (x)

Alternatively can optimize multivariate
L(f (x), y) = − ln p(y |x)

using linear or quadratic approximation

for quadratic approximation need to invert ∂2

∂r2F (r , y)
∣∣∣
r=f (x)

.

Can use diagonal approximation.
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Boosting extensions

Types of boosting

Loss function F :

F (|f (x)− y |) - regression
− ln p(y |x) or F (y · score(y = +1|x)) - binary classi�cation
− ln p(y |x) - multiclass classi�cation

Optimization

analytical (AdaBoost)
gradient based
based on quadratic approximation

Base learners

continious
discrete

Classi�cation

binary
multiclass

Extensions: shrinkage, subsampling
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