Boosting - Victor Kitov

Boosting

Victor Kitov

1/28

Boosting - Victor Kitov

Motivation for ensembles

o Consider M classifiers fi(x), ...fp(x), performing binary
classification.

o Let &, ...&p denote indicators of mistakes by fi,...fy on
particular observation x

@ Suppose &1, ...&pm are independent binomial variables with
P =1)=p

e Then E& = p, Var[¢] = p(1 — p)

o Consider F(x) be aggregating classifier, assigning x to the
class with maximum votes among fi(x), ...fp(x).

o Consider
_ &Gt +ém

M
@ Probability of mistake = probability that majority of &1, ... m
are ones = P(n > 0.5).
e P(n>0.5)—0as M — oo because En = p, Var[n] = P p)

2/28

Boosting - Victor Kitov

Linear ensembles

Linear ensemble:
F(x) = fo(x) + crhi(x) + ... + cmhm(x)

Regression: y(x) = F(x)
Binary classification: score(y|x) = F(x), y(x) = sign F(x)
o Notation: hy(x),...hpm(x) are called base learners, weak

learners, base models.

e Too expensive to optimize fy(x), h1(x),...hpm(x) and ¢y, ...cm
jointly for large M.

@ Idea: optimize fy(x) and then each pair (hpy(x), cm) greedily.

@ After ensemble is built we can fine-tune ¢y, ...cy by fitting
features fy(x), hi(x),...hm(x) with linear regression/classifier.

3/28

Boosting - Victor Kitov

Forward stagewise additive modeling (FSAM)

Input: training dataset (x;,y;), i = 1,2,...N; loss function L(f,y),
general form of “base learner” h(x|y) (dependent from parameter
) and the number M of successive additive approximations.

© Fit initial approximation fy(x) = arg ming SN | L(F(x), vi)
Q@ Form=12..M:
® find next best classifier

N
(Cms hm) = argmin 2_: L(fm-1(x7) + ch(x:), y:)

Q set

fn(x) = fn—1(X) + cmhm(x)

Output: approximation function
fin(x) = f(x) + Lm—y mhm(x)

4/28

Boosting - Victor Kitov

Comments on FSAM

@ Number of steps M should be determined by performance on
validation set.

@ Step 1 need not be solved accurately, since its mistakes are
expected to be corrected by future base learners.

e we can take fp(x) = arg mingep Z,N:l L(B,yi) or simply
fo(x) = 0.

@ By similar reasoning there is no need to solve 2.1 accurately

o typically very simple base learners are used such as trees of
depth=1,2,3.
o For some loss functions, such as L(y, f(x)) = e) we can
solve FSAM explicitly.

@ For general loss functions gradient boosting scheme should be
used.

5/28

Boosting - Victor Kitov
Adaboost

Table of Contents

@ Adaboost

6/28

Boosting - Victor Kitov
Adaboost

Adaboost (discrete version): assumptions

@ binary classification task y € {+1, -1}

o family of base classifiers h(x) = h(x|y) where 7 is some fitted
parametrization.

h(x) € {+1,-1}

classification is performed with

y = sign{fo(x) + c1i(x) + ... + ecmfm(x)}

optimized loss is L(y, f(x)) = e ¥ (¥)

FSAM is applied

7/28

Boosting - Victor Kitov
Adaboost

Adaboost (discrete version): algorithm

Input: training dataset (x;,y;), i = 1,2,...N; number of additive
weak classifiers M, a family of weak classifiers h(x) € {+1, -1},
trainable on weighted datasets.
O Initialize observation weights w; =1/n, i = 1,2, ...n.
Q form=1,2,..M:
® fit h™(x) to training data using weights w;
® compute weighted misclassification rate:
Sy willh™(x) # i
ZI{V:1 Wi
if Epy > 0.5 or Ep; = 0: terminate procedure.
compute ¢, = 2 In((1 — Ep)/Em)

increase all weights, where misclassification with h™(x) was
made:

E,=

9000

wi wie*, i€ {i: h™(x) # yi}

Output: composite classifier f(x) = sign (Z,’\TLI cmh’”(x)>

8/28

Boosting - Victor Kitov
Adaboost

Adaboost derivation

Set initial approximation, typically fo(x) = 0.
Apply FSAM for m=1,2,...M:

N
(cm,h™) = arg anmZE(fm_l(X,-) + cmh™(x), yi)

Cm; .
i=1

N
= arg min Ze_yf'fm—l(xi)e—cmyih’"(x)
=1

Cm,h™ 4
i

= arg min E wme=emyih™(x) - yym — o= Yifm-1(xi)
Cm,h™ <

9/28

Boosting - Victor Kitov
Adaboost

Adaboost derivation

N

— RM(x: —
g w"e cmyih™(xi) — E wime M + E w;em

i=1 i:hm(x;)=y; i-h™(x;)Yi
— e Cm Z Wim + eCm Z Wim
i:h™(xi)=yi i-h™(x;)#Yi
N
— efm Z Wim 4 e Cm Z Wim — e Cm Z Wim
ith™(x;)A£y; i=1 i:h™(x;)#yi

=e Z w4 (e — e” M) Z w;"
i

ith™ (xi)yi
Since ¢y > 0 hpy(x) should be found from

N
him(x;) = arg min Z; w/I[h(x;) # yil
1022

Boosting - Victor Kitov
Adaboost

Adaboost derivation
Denote F(cm) = Y iy w/™exp(—cmyih™(xi)). Then

N
8F(Cm) m ,—cmyih™(x;),. pm
ICm :_Z;Wiecy yih™(xj) =0

— Z wie ™ 4 E wi"e™ =0
ith™(x;)=y; ih™(x;)#yi
m

Zi:h’”(x,-):y,- w;
Zi:h’"(x,—);éy,- Wim

o — E| <Z"1h’"(xi):y,- Wim> / (ZIIV:]. W:m> _ Eln 1-E,
§ (E"ih'"(xi)iy; me) / (ZIIVZI W,'m) 2 Em
S WA (%) # yil

N m
;z'?l Wi

e2cm —

where E,, :=

Boosting - Victor Kitov
Adaboost

Adaboost derivation

Weights recalculation:
wmtl df e Vifm(xi) — og=Yifm—1(xi) g=yicmh™(x;)
1
Noting that —y;h"™(x;) = 2I[h™(x;) # yi] — 1, we can rewrite:

WM — e i3 (x) gem(IIN(x) A1) _

= WimezcmH[hm(Xi)¢Yi]e—Cm o WimeQCmH[h'"(Xi)#y,‘]

Comments:

@ We can remove common constants from weights.

° w,.’"Jrl = w/" for correctly classified objects by hpm(x).

+1

o w! = wmem for incorrectly classified objects by hm(x).

e so later classifiers will pay more attention to them

12/28

Boosting - Victor Kitov
Gradient boosting

Table of Contents

@ Gradient boosting

13/28

Boosting - Victor Kitov
Gradient boosting

Motivation

@ Problem: For general loss function L FSAM cannot be solved
explicitly

@ Analogy with function minimization: when we can’t find
optimum explicitly we use numerical methods

@ Gradient boosting: numerical method for iterative loss
minimization

14/28

Boosting - Victor Kitov
Gradient boosting

Gradient descent algorithm

F(w) — min, weRV
w

Gradient descend algorithm:

INPUT:
n-parameter, controlling the speed of convergence
M -number of iterations

ALGORITHM:
initialize w
for m=1,2,..M:
_ 9F(w)
Aw =5~
w=w—nAw

15/28

Boosting - Victor Kitov
Gradient boosting

Modified gradient descent algorithm

INPUT:
M-number of iterations

ALGORITHM:
initialize w
for m=1,2,..M:
Aw — 2Fw)
ow
c¢* =argminc F(w — cAw)
w=w-—c"Aw

16/28

Boosting - Victor Kitov
Gradient boosting

Gradient boosting

o Now consider F (f(x1),...F(xn)) = SN, £(F(xn), i)

o Gradient descent performs pointwise optimization, but we need
generalization, so we optimize in space of functions.

e Gradient boosting implements modified gradient descent in
function space:

o find z; = _W|

r=Ffm=1(x;)

o fit base learner hy,(x) to {(x,-7z,-)],~,N:1

17/28

Boosting - Victor Kitov
Gradient boosting
Input: training dataset (x;,y;), i = 1,2,...N; loss function L(f,y)

and the number M of successive additive approximations.
@ Fit initial approximation fy(x) (might be taken fy(x) = 0)

18/28

Boosting - Victor Kitov
Gradient boosting
Input: training dataset (x;,y;), i = 1,2,...N; loss function L(f,y)
and the number M of successive additive approximations.

@ Fit initial approximation fy(x) (might be taken fy(x) = 0)
@ For eachstep m=1,2,..M:

18/28

Boosting - Victor Kitov
Gradient boosting

Input: training dataset (x;,y;), i = 1,2,...N; loss function L(f,y)
and the number M of successive additive approximations.

@ Fit initial approximation fy(x) (might be taken fy(x) = 0)

@ For eachstep m=1,2,..M:

© calculate derivatives z; = ‘%(’y’)|

r=fm—1(x;)

18/28

Boosting - Victor Kitov
Gradient boosting

Input: training dataset (x;,y;), i = 1,2,...N; loss function L(f,y)
and the number M of successive additive approximations.
@ Fit initial approximation fy(x) (might be taken fy(x) = 0)
@ For eachstep m=1,2,..M:
@ calculate derivatives z; = Fm—1(x)
o fit h, to {(x,-,z,-)},l"_l, for example by solving

8£(r vi) |
r=

Z(h (Xn) — 20)* — m|n

18/28

Boosting - Victor Kitov
Gradient boosting

Input: training dataset (x;,y;), i = 1,2,...N; loss function L(f,y)
and the number M of successive additive approximations.
@ Fit initial approximation fy(x) (might be taken fy(x) = 0)
@ For eachstep m=1,2,..M:
@ calculate derivatives z; = Fm—1(x)
o fit h, to {(x,-,z,-)},l"_l, for example by solving

aﬁ(r vi) |
r=

Z(h (Xn) — 20)* — m|n
© solve univariate optimization problem:

> L (fn-1(6) + Cmhm(xi), i) = min

18/28

Boosting - Victor Kitov
Gradient boosting

Input: training dataset (x;,y;), i = 1,2,...N; loss function L(f,y)
and the number M of successive additive approximations.
@ Fit initial approximation fy(x) (might be taken fy(x) = 0)
@ For eachstep m=1,2,..M:
@ calculate derivatives z; = Fm—1(x)
o fit h, to {(x,-,z,-)},l"_l, for example by solving

aﬁ(r vi) |
r=

Z(h (Xn) — 20)* — m|n
© solve univariate optimization problem:

> L (fn-1(6) + Cmhm(xi), i) = min

0 set fn(x) = fm—1(x) + cmhm(x)

18/28

Boosting - Victor Kitov
Gradient boosting

Input: training dataset (x;,y;), i = 1,2,...N; loss function L(f,y)
and the number M of successive additive approximations.
@ Fit initial approximation fy(x) (might be taken fy(x) = 0)
@ For eachstep m=1,2,..M:
@ calculate derivatives z; = Fm—1(x)
o fit h, to {(x,-,z,-)},l"_l, for example by solving

aﬁ(r vi) |
r=

Z(h (Xn) — 20)* — m|n
© solve univariate optimization problem:

> L (fn-1(6) + Cmhm(xi), i) = min

0 set fn(x) = fm—1(x) + cmhm(x)
Output: approximation functioqs/fl\é(x) = fo(x) + M| cmhm(x)

Boosting - Victor Kitov
Gradient boosting

Gradient boosting: examples

In gradient boosting

ZN: <hm(X") - (‘aﬁgr’)/)h:fm—l(xn)>>2 — mhrlnn

n=1
Specific cases:
2
o L=3(r—y)P=>-G=—(r—y)=(-r)
o hm(x) is fitted to compensate regression errors (y — f,_1(x))

0, ry>0

e L=[-nr => 9L _
[Y]—f— or {y’ ry <0

o hm(x) is fitted to yI[f(x)y < 0]

19/28

Boosting - Victor Kitov
Boosting extensions

Table of Contents

© Boosting extensions

20/28

Boosting - Victor Kitov
Gradient boosting of trees
Input: training dataset (x;,y;), i = 1,2,...N; loss function L(f,y)

and the number M of successive additive approximations.
@ Fit constant initial approximation fy(x):

fo(x) = arg min, Z,N:1 L(v, i)

21/28

Boosting - Victor Kitov
Gradient boosting of trees

Input: training dataset (x;,y;), i = 1,2,...N; loss function L(f,y)
and the number M of successive additive approximations.
© Fit constant initial approximation fy(x):
fo(x) = arg min, Z,N:1 L(v, yi)
@ For eachstep m=1,2,..M:

21/28

Boosting - Victor Kitov
Gradient boosting of trees

Input: training dataset (x;,y;), i = 1,2,...N; loss function L(f,y)
and the number M of successive additive approximations.
© Fit constant initial approximation fy(x):
fo(x) = arg min, Z,N:1 L(v, yi)
@ For eachstep m=1,2,..M:

O calculate derivatives z; = M(r’y)|

r=fm=1(x)

21/28

Boosting - Victor Kitov
Gradient boosting of trees

Input: training dataset (x;,y;), i = 1,2,...N; loss function L(f,y)
and the number M of successive additive approximations.
@ Fit constant initial approximation fy(x):
- N
fo(x) = argminy > ;"1 L(7, yi)
@ For eachstep m=1,2,..M:
@ calculate derivatives z; = —fm=1(x)
@ fit regression tree h™ on {(x,,z,)},"’:1 with some loss function,
get leaf regions {an}]l;l

0ﬁ(ny))

21/28

Boosting - Victor Kitov
Gradient boosting of trees

Input: training dataset (x;,y;), i = 1,2,...N; loss function L(f,y)
and the number M of successive additive approximations.
© Fit constant initial approximation fy(x):
. N
fo(x) = argminy > ;"1 L(7, yi)
@ For eachstep m=1,2,..M:
@ calculate derivatives z; = —fm=1(x)
@ fit regression tree h™ on {(x,,z,)},"’:1 with some loss function,
get leaf regions {an}]l;l
© for each terminal region Rj’", j=1,2,...Jy solve univariate
optimization problem:

_argmln Z L(fm—1(x;) +, ¥i)
X,ER’"

0ﬁ(r,y))

21/28

Boosting - Victor Kitov
Gradient boosting of trees

Input: training dataset (x;,y;), i = 1,2,...N; loss function L(f,y)
and the number M of successive additive approximations.
© Fit constant initial approximation fy(x):
fo(x) = arg min, Z,N:1 L(v, yi)
@ For eachstep m=1,2,..M:
® calculate derivatives z; = M(r’y)| —Fm-1(x)

@ fit regression tree h™ on {(x,,z,)},"’:1 with some loss function,
get leaf regions {an}]l;l

© for each terminal region Rj’", j=1,2,...Jy solve univariate
optimization problem:

_argmln Z L(fm—1(x;) +, ¥i)

X,ER’"
O update f(x) = fr_1(x) + ZJ-J21 X € R

21/28

Boosting - Victor Kitov
Boosting extensions

Gradient boosting of trees

Input: training dataset (x;,y;), i = 1,2,...N; loss function L(f,y)
and the number M of successive additive approximations.
© Fit constant initial approximation fy(x):
fo(x) = arg min, Z,N:1 L(v, yi)
@ For eachstep m=1,2,..M:

o
(2]

o

Output:

calculate derivatives z; = M(r’}’)| —Fm-1(x)

fit regression tree h™ on {(x,,z,)},"’:1 with some loss function,
get leaf regions {Rf“}fgl

for each terminal region R, j = 1,2, ...J, solve univariate
optimization problem:

= argmm Z L(fm—1(x;) +, ¥i)
X,ER’"
update fin(x) = fn—1(x) + thl ’YJm]I[X € RJm]

approximation function fy(x)
21/28

Boosting - Victor Kitov
Boosting extensions

Modification of boosting for trees

e Compared to first method of gradient boosting, boosting of
regression trees finds additive coefficients individually for each
terminal region R, not globally for the whole classifier h"(x).

o This is done to increase accuracy: forward stagewise algorithm
cannot be applied to find R, but it can be applied to find
V" because second task is solvable for arbitrary L.

o Max leaves J

e interaction between no more than J — 1 terms
o usually 4 < J<8

@ M controls underfitting-overfitting tradeoff and selected using
validation set

Boosting - Victor Kitov
Boosting extensions

Shrinkage & subsampling

@ Shrinkage of general GB, step (d):
fm(x) = fm—1(x) + vemhm(x)
@ Shrinkage of trees GB, step (d):

Im

fm(x) = f—1(x) + I/Z Yjml[x € Rjm]
j=1

o Comments:
e v e (0,1]
ovl|l— M1
@ Subsampling

e increases speed of fitting
e may increase accuracy

23/28

Boosting - Victor Kitov
Boosting extensions

Linear loss function approximation

Consider sample (x,y).

oL(r,
L(f(x) + h(x), y) = L(f(x),) + h(x) (gr 2 F(x)
=> h(x) should be fitted to — % o

24/28

Boosting - Victor Kitov
Boosting extensions

Newton method of optimization

Suppose we want F(w) — miny,

Let w* = argmin,, F(w)

Then F/(w*) =0

Taylor expansion of F'(w) around w to w*:

F'(w*)=0= F'(w)+ F"(w)(w* — w) + o||lw — w*|))

o It follows that
" -1
wh—w=— [F (W)} F'(w) + o(||lw — w*|))
o Iterative scheme for minimization:

1"

W— w — [F (W)] - F'(w)

o it is scaled gradient descent

o speed of convergence faster (uses quadratic approximation in
Taylor expansion)

e converges in one step fogs%%adratlc F(w).

Boosting - Victor Kitov
Boosting extensions

Quadratic loss function approximation

L(f(x) + h(x), y) =

aL(r,y 1 0?L(r,y
£(F().) + h(x) 2 ey ELD)
or r=f(x) 2 or r=f(x)
) () BE[(ar,y) 2
1 0°L(r,y " lr=f(x)
= h(x) + + const(h(x))
207 e i

/ PL(ry) with

=> h(x) should be fitted to — 9L(r.y) (¢
I’:f(X) r r:f(X)

or

weight % }r:f()

26/28

Boosting - Victor Kitov
Boosting extensions

Case of C > 3 classes

e Can fit C independent boostings {fy(x)}yC:1 (one vs. all
scheme)
o y(x) = argmax, f,(x)
@ Alternatively can optimize multivariate
L(f(x),y) = —Inp(y|x)
e using linear or quadratic approximation
o for quadratic approximation need to invert g—;F(r,y)

r:f(x).
Can use diagonal approximation.

27/28

Boosting - Victor Kitov
Boosting extensions

Types of boosting

@ Loss function F:
o F(|f(x)— yl|) - regression
o —Inp(y|x) or F(y - score(y = +1|x)) - binary classification
o —Inp(y|x) - multiclass classification

Optimization

e analytical (AdaBoost)

o gradient based

e based on quadratic approximation
@ Base learners

e continious

o discrete
Classification

e binary
e multiclass

e Extensions: shrinkage, subsampling

28/28

	Adaboost
	Gradient boosting
	Boosting extensions

