
Singular value decomposition - Victor Kitov

Singular value decomposition

Victor Kitov

1/21



Singular value decomposition - Victor Kitov

De�nitions

Consider matrix X ∈ RNxD . For this matrix:

square roots of eigenvalues of XTX are called singular values.

orthonormal eigenvectors of XTX are called right singular

vectors.

orthonormal eigenvectors of XXT are called left singular

vectors.

Principal component ai is the i-th right singular vector of X ,
corresponding to i-th largest singular value λi .
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SVD decomosition

Every matrix X ∈ RNxD , rankX = R , can be decomposed into the
product of three matrices:

X = UΣV T

where U ∈ RNxR , Σ ∈ RRxR , V T ∈ RRxD , and Σ =
diag{σ1, σ2, ...σR}, σ1 ≥ σ2 ≥ ... ≥ σR ≥ 0, UTU = I , V TV = I .
I ∈ RDxD denotes identity matrix.
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Interpretation of SVD

For Xij let i denote objects and j denote properties.

U represents standardized coordinates of concepts

V T represents standardized concepts representations

Σ shows the magnitudes of presence of standardized concepts
in X .

4/21



Singular value decomposition - Victor Kitov

Original SVD decomposition
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Reduced SVD decomposition

Simpli�cation to rank K ≤ R :

XK = UKΣKVK

Σ = diag{σ1, σ2, ...σK , σK+1, ...σR} −→ diag{σ1, σ2, ...σK} = ΣK

U = [u1, u2, ...uK , uK+1, ...uR ] −→ [u1, u2, ...uK ] = UK

V = [v1, v2, ...vK , vK+1, ...vR ] −→ [v1, v2, ...vK ] = VK
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Properties of reduced SVD decomposition

Suppose X ∈ RNxD , rankX = R , is approximated with
XK = UKΣKVK . Then:

rankXK = K .

XK = argminB:rankB≤K ‖X − B‖

Which K to choose?

De�ne Frobenius norm ‖X‖2F =
∑N

n=1

∑D
d=1

x2nd
‖X‖2F=

∑R
i=1

σ2i
‖XK‖2F=

∑K
i=1

σ2i

Choose K = argminK

{
‖XK‖2F
‖X‖2F

≥ t
}
, where t is some

threshold, say t = 0.95.
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Applications of SVD
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Applications of SVD

Memory e�ciency

Storage costs of X ∈ RNxD , assuming N ≥ D and each element
taking 1 byte:

Memory storage costs

representation of X memory requirements

original X O(ND) = O(min{N,D}max{N,D})
fully SVD decomposed NR + R2 + RD = O(R max{N,D})
reduced SVD to rank K NK + K 2 + KD = O(K max{N,D})
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Applications of SVD

Performance e�ciency

Suppose we have N documents, vocabulary size is D, typically
D ≥ N.

X ∈ RNxD represents normalized vector representation of
documents
q ∈ RD represents normalized vector representation of search
query

X ≈ XK = UKΣK︸ ︷︷ ︸
B

V T
K = BV T

K , B ∈ RNxK

Document xi relevance is proportional to 〈xi , q〉, so to �nd
matching documents we need to calculate
Xq = [〈x1, q〉, ...〈xN , q〉]T .
Direct multiplication Xq takes
O(ND) = O(max{N,D}min{N,D}) operations.
XKq = UKΣKV

T
K q = BV T

K q. V T
K q takes O(DK ) multiplications

and BV T
K q takes O(NK ), so total complexity is O(K max{N,D}).

Typically min{N,D} ≥ 10000 and K ≈ 300.
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Applications of SVD

SVD for square non-degenerate matrix

For square non-degenerate matrix X :

X ∈ RDxD , rgX=D, so U ∈ RDxD , V ∈ RDxD , U−1 = UT ,
V−1 = V T .

U, V T represent rotations, Σ represents scaling,
every square matrix may be represented as superposition of
rotation, scaling and another rotation.

For full rank X :
X−1 = VΣ−1UT ,

since XX−1 = UΣV TVΣ−1UT = I .
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Recommendation system with SVD
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Recommendation system with SVD

Example
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Andrew 4 5 5 0 0 0

John 4 4 5 0 0 0

Matthew 5 5 4 0 0 0

Anna 0 0 0 5 5 5

Maria 0 0 0 5 5 4

Jessika 0 0 0 4 5 4
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Recommendation system with SVD

Example

U =



0. 0.6 −0.3 0. 0. −0.8
0. 0.5 −0.5 0. 0. 0.6
0. 0.6 0.8 0. 0. 0.2
0.6 0. 0. −0.8 −0.2 0.
0.6 0. 0. 0.2 0.8 0.
0.5 0. 0. 0.6 −0.6 0.


Σ = diag{

(
14. 13.7 1.2 0.6 0.6 0.5

)
}

V T =



0. 0. 0. 0.6 0.6 0.5
0.5 0.6 0.6 0. 0. 0.
0.5 0.3 −0.8 0. 0. 0.
0. 0. 0. −0.2 0.8 −0.6
−0. −0. −0. 0.8 −0.2 −0.6
0.6 −0.8 0.2 0. 0. 0.


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Recommendation system with SVD

Example (excluded insigni�cant concepts)

U2 =



0. 0.6
0. 0.5
0. 0.6
0.6 0.
0.6 0.
0.5 0.


Σ2 = diag{

(
14. 13.7

)
}

V T
2 =

(
0. 0. 0. 0.6 0.6 0.5
0.5 0.6 0.6 0. 0. 0.

)
Concepts may be

patterns among movies (along j) - action movie / romantic movie
patterns among people (along i) - boys / girls

Dimensionality reduction case: patterns along j axis.
15/21



Singular value decomposition - Victor Kitov

Recommendation system with SVD

Applications

Example: new movie rating by new person

x =
(
5 0 0 0 0 0

)
Dimensionality reduction: map x into concept space:

y = V T
2 x =

(
0 2.7

)
Recommendation system: map y back to original movies
space:

x̂ = yV T
2 =

(
1.5 1.6 1.6 0 0 0

)
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Recommendation system with SVD

Fronebius norm

Fronebius norm of matrix X is ‖X‖F
df
=
√∑N

n=1

∑D
d=1

x2nd

Using properties ||X ||2F = trXXT and trAB = trBA, we
obtain:

‖X‖2F = tr[UΣV TVΣUT ] = tr[UΣ2UT ] =

= tr[Σ2UTU] = tr[Σ2] =
R∑

r=1

σ2r (1)
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Recommendation system with SVD

Matrix approximation

Consider approximation Xk = UΣkV
T , where

Σk = diag{σ1, σ2, ...σk , 0, 0, ..., 0} ∈ RRxR .

Theorem 1

Xk is the best approximation of X retaining k concepts.

Proof: consider matrix Yk = UΣ′V T , where Σ′ is equal to Σ
except some R − k elements set to zero:
σ′i1 = σ′i2 = ... = σ′iR−k

= 0. Then, using (1)

‖X − Yk‖2F =
∥∥∥U(Σ− Σ′)V T

∥∥∥2
F

=
R−k∑
p=1

σ2ip ≤
R−k∑
p=1

σ2p = ‖X − Xk‖2F

since σ1 ≥ σ2 ≥ ... ≥ σR ≥ 0.
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Recommendation system with SVD

Matrix approximation

How many components to retain?

General case: Since

‖X − Xk‖2F =
∥∥∥U(Σ− Σk)V T

∥∥∥2
F

=
R∑

i=k+1

σ2i

a reasonable choice is k∗ such that

‖X − Xk∗‖2F
‖X‖2F

=

∑R
i=k∗+1

σ2i∑R
i=1

σ2i
≥ threshold

Visualization: 2 or 3 components.

Theorem 2

For any matrix Yk with rankYk = k : ‖X − Xk‖F ≤ ‖X − Yk‖F
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Recommendation system with SVD

Finding U and V

Finding V

XTX =
(
UΣV T

)T
UΣV T = (VΣUT )UΣV T = VΣ2V T . It

follows that
XTXV = VΣ2V TV = VΣ2

So V consists of eigenvectors of XTX with corresponding
eignvalues σ2

1
, σ2

2
, ...σ2R .

Finding U:

XXT = UΣV T
(
UΣV T

)T
= UΣV TVΣUT = UΣ2UT . So

XXTU = UΣ2UTU = UΣ2.

So U consists of eigenvectors of XXTwith corresponding
eigenvalues σ2

1
, σ2

2
, ...σ2R .
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Recommendation system with SVD

Comments

Denote the average X̄ ∈ RD : X̄j =
∑N

i=1
xij

Denote the n-th row of X be Xn ∈ RD : Xnj = xnj

For centered X sample covariance matrix Σ̂ equals:

Σ̂ =
1

N

N∑
n=1

(Xn − X̄ )(Xn − X̄ )T =
1

N

N∑
n=1

XnX
T
n

=
1

N
XTX

V consists of principal components since

V consists of eigenvectors of XTX ,

principal components are eignevectors of Σ̂ and

Σ̂ ∝ XTX .
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