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Definitions

Consider matrix X € RV*P For this matrix:

@ square roots of eigenvalues of X7 X are called singular values.

e orthonormal eigenvectors of X7 X are called right singular
vectors.

o orthonormal eigenvectors of XX T are called left singular
vectors.

Principal component a; is the i-th right singular vector of X,
corresponding to i-th largest singular value \;.
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SVD decomosition

Every matrix X € RNXD | rank X = R, can be decomposed into the

product of three matrices:
X=Uzv’

where U € RVR ¥ ¢ RRR T c RRD and ¥ =
diag{al,ag,...aR}, o1 > 092> ...> OR > 0, UTU = /, VTV =1.
| € RP*D denotes identity matrix.

- D ——» - R —»

- R —» - D) ——»
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Interpretation of SVD

- D ——» - R —»

- R — - ) ——

For Xj; let i denote objects and j denote properties.
@ U represents standardized coordinates of concepts
o VTrepresents standardized concepts representations

@ Y shows the magnitudes of presence of standardized concepts
in X.
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Original SVD decomposition

- D ——» - R —»

- R — - ) ——
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Reduced SVD decomposition

- D ——» - -

-+ K> - D —»

5
X

X = Uk pom Ve

Simplification to rank K < R:
Xk = ULk Vk

> = diag{al,ag, < OK,OK+1, ...JR} — diag{01,02, ...JK} =2k
U= [Ul, Uz, ...uKk,UK+1, ...UR] — [U17 U2,...UK] = Uk
V= [V], Vo, ...VK, VK+17--~VR] — [V1, V2,...VK] = VK
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Properties of reduced SVD decomposition

@ Suppose X € RMP rank X = R, is approximated with
XK = UKZKVK. Then:
e rank Xx = K.
° XK = arg minB:,ankBSK HX — BH
@ Which K to choose?
o Define Frobenius norm || X|[z = SV 520 x2,
2 R
° ||)(||F;:j£:i:?% a?
o [ Xklp=2"i—1 07
e Choose K = arg minK{
threshold, say t = 0.95.

[ XkclIZ
X117

> t}, where t is some
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Applications of SVD
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Applications of SVD

Memory efficiency

Storage costs of X € RMP | assuming N > D and each element
taking 1 byte:

Memory storage costs
’ representation of X \ memory requirements ‘
original X O(ND) = O(min{N, D} max{N, D})
fully SVD decomposed NR + R? + RD = O(Rmax{N, D})
reduced SVD to rank K | NK + K2 + KD = O(K max{N, D})
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Applications of SVD

Performance efficiency

Suppose we have N documents, vocabulary size is D, typically
D>N.
o X € RN*D represents normalized vector representation of
documents
o q € RP represents normalized vector representation of search

query
°
X ~ X = UkZk V)l = BV, BecRVK
——
B
Document x; relevance is proportional to (x;, q), so to find
matching documents we need to calculate
Xq = [(x1,q),...0xn, )] .
Direct multiplication Xq takes
O(ND) = O(max{N, D} min{N, D}) operations.
Xxq = UkZk V,;rq = Bng. V}z—q takes O(DK) multiplications
and BV.T 4 takee O(NK) <o totalzeomplexitv ic O(K max{ N DY)
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Applications of SVD

SVD for square non-degenerate matrix

For square non-degenerate matrix X:
o X e RPP g X=D, so UecRPP v cRPP y-1=yT,
vl=vT,
o U, VT represent rotations, ¥ represents scaling,
every square matrix may be represented as superposition of
rotation, scaling and another rotation.

o For full rank X:
X t=vI 1y’

since XX 1=UuxzvTvz1ly’ =.
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Recommendation system with SVD
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© Recommendation system with SVD
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Recommendation system with SVD

Example

o
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FlO I xlF|ag|<
Andrew | 4 | 5| 5| 0| 0|0
John | 4 | 4| 5|00 |0
Matthew | 5 | 5 |4 | 0| 0 |0
Anna | 0| 0| 0|5 |5 |5
Maria| 0| 0| 0| 5|5 |4
0|00 |4]|5 4

Jessika
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Recommendation system with SVD

Example

0.5 0.
¥ = diag{(14.

0. 0.
0.6
0.3
0. 0.
—0.
-0.8

0.5
yT_ |05
0.
0.6

-03 0. 0. -0.38

-05 0. 0. 0.6
0.8 0. 0. 0.2
0. -08 —-02 0.

0. 0.2 08 0.

0. 06 06 O

13.7 1.2 06 0.6 0.5)}

0. 06 06 05
0.6 0. 0. 0.
-08 0. 0. 0.
0. —-02 08 -06
-0. 08 —-02 -06
0.2 0. 0. 0.

14/21



Singular value decomposition - Victor Kitov
Recommendation system with SVD

Example (excluded insignificant concepts)

0. 06
0. 05
0. 06

Uz 06 0
06 0
05 0.

¥, = diag{(14. 13.7)}

yr_ (0 0 0 0606 05
2 05 0.6 06 0. 0. O.

Concepts may be

@ patterns among movies (along j) - action movie / romantic movie
@ patterns among people (along i) - boys / girls

Dimensionality reduction case: patterns along j axis.
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Recommendation system with SVD

Applications

@ Example: new movie rating by new person
x=(5 00 0 0 0)
e Dimensionality reduction: map x into concept space:
y=V)x= (O 2.7)

@ Recommendation system: map y back to original movies
space:
Xx=yVy =(15 16 16 0 0 0)
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Recommendation system with SVD

Fronebius norm

@ Fronebius norm of matrix X is || X|| ¢ & \/Zrlyzl P x2,

o Using properties || X||2 = tr XXT and tr AB = tr BA, we
obtain:

IX|[2 = t[UzVTVEUT] =t[UL2UT] =

R
= u[ZUTU =[] =) o7 (1)
r=1
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Recommendation system with SVD

Matrix approximation

Consider approximation X, = UL, VT, where
Y= diag{al, 02,...0x,0,0, ..., 0} S RRR,

X is the best approximation of X retaining k concepts. l

Proof: consider matrix Y, = UZ'VT, where ¥’ is equal to
except some R — k elements set to zero:

;1 = a,fz =..= U,R L= = 0. Then, using (1)

g

X = Vil = v - v Za,p<za = IX = XulI2

since o1 > 02 > ... > or > 0.
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Recommendation system with SVD

Matrix approximation

How many components to retain?

General case: Since

X — XH#__WJZ zvaH }: o2
i=k+1

a reasonable choice is k* such that

X — Xe |2 R iy 02
IX1E > e O

Visualization: 2 or 3 components.

For any matrix Y with rank Yi = k: || X — Xi||p < [|X = Yil|g
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Recommendation system with SVD

Finding U and V

e Finding V
XTX = (UsVT)T UsvT = (VEUT)USVT = VE2VT | It
follows that
XXV =v2vTy = vy?

So V consists of eigenvectors of X T X with corresponding

eignvalues 0%, 03, ...0%.

e Finding U:
XXT = Usz(Usz) =UzVvTvzUuT = Uz2UT. So
XXTU=uz2uTu = Uz

So U consists of eigenvectors of XX Twith corresponding

eigenvalues 02,03, ...0%.
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Recommendation system with SVD

Comments

Denote the average X € RP : )_<J = Z,N:l Xjj
Denote the n-th row of X be X, € RP : X,; = x,;

@ For centered X sample covariance matrix X equals:

y = NZ(X X)(Xn — X)T NZXXT

o V consists of principal components since

o V consists of eigenvectors of X7 X,

e principal components are eignevectors of ¥ and
o T x XTX.
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