Sense's standards and transmission of knowledge for their estimation applying the open-form tests

Dmitry Mikhaylov and Gennady Emelianov

Yaroslav-the-Wise Novgorod State University

$11^{\text {th }}$ International Conference «Pattern Recognition and Image Analysis: New Information Technologies»(PRIA-11-2013),

23-28 September, 2013

Samara, Russian Federation

Research subject

Methods and algorithms for formation of knowledge about synonymy in Natural Language (NL).

Considered problem

To transmit a knowledge represented by texts on some natural language between its native speakers (experts and trainees, correspondingly).

Main purpose of research

Theoretical reasoning of structure of knowledge about synonymy.
Development of methods and algorithms for forming these knowledge and application them for the family of tasks of:

- sense-similarity's estimation of texts in subject-oriented natural language;
- computer-aided filling and compression of language's and subject-area's knowledge base;
- seeking a most rational plan for sense's transfer among different native speakers;
- coordination of knowledge units which were formed by various experts.

Definition 1.4

Usage Situation for Natural Language (USNL) is the description of new social experience (the content of joint actions) by means of this natural language.

The NL-context accumulated by some USNL S can be represented by a triple:

$$
\begin{equation*}
S=(O, R, T s), \tag{1}
\end{equation*}
$$

where O is a set of symbols associated with reality concepts; $T s$ is a set of description forms for S in some sign system; $R \subset O^{n}$, where $n \in 1, \ldots,|O|$.

Let Synt be a surjective function determined by syntax of given NL;
Then for $\forall T s_{i} \in T s \exists T r_{i}: T s_{i}=\operatorname{Synt}\left(T r_{i}\right)$, where $T r_{i}$ is a marked tree.
Thus if $O=M \cup V, M \cap V \neq \emptyset$, then for $\forall o_{j} \in M$ it will be found $o_{k} \in V$ with the following correspondence in the tree $T r_{i}$:

- to the concept o_{j} there corresponds a child node with the label w_{j},
- to the concept o_{k} there corresponds a parent node with the label w_{k}.

Let's represent a single USNL by a Formal Context (FC):

$$
\begin{equation*}
K=(G, M, I) \tag{2}
\end{equation*}
$$

where $\forall g \in G$ is a stem of word syntactically submitted to any other word from some $T s_{i} \in T s$ in model (1).
The attributes's set M comprises the subsets designated by corresponding bottom indexes:

- M_{1} is the set of indications to the syntactically main word's stem;
- M_{2} is the set of indications to the main word's inflection;
- M_{3} is the set of «stem-inflection» relations for a syntactically main word;
- M_{4} is the set of combinations of inflections of dependent and main words. After an inflection via the colon, a preposition is shown (if any) that provides a relation with a dependent word;
- M_{5} is the set of indications for dependent word's inflection.

It is required: to form $I \subseteq G \times M$ by analysis of symbolic structure and choice of $T s_{i} \in T s$ with a minimal length and maximum of words most generally used in different phrases from Ts (taking possible synonyms into account).

Revelation of stems and inflections concerning the given USNL

Problem statement

Let
$W_{i j}$ be the ordered sequence of symbols constituting the word $w_{i j}$,
$W c_{i j}$ be the ordered sequence of symbols for invariant part (i.e. stem) of word,
$W f_{i j}$ be the ordered sequence of symbols for word's inflection,
\odot be the designation for concatenation operations.

It is given:

$$
T s=\left\{T s_{i}: T s_{i}=\underset{j}{\odot} W_{i j}\right\} \begin{aligned}
& \text { is a set of Semantically Equivalent (SE) phrases } \\
& \text { defining the USNL. }
\end{aligned}
$$

It is required to find:

$$
P w_{i}=\left\{\left(W c_{i j}, W f_{i j}\right): W c_{i j} \odot W f_{i j}=W_{i j}\right\} \text { for all } i=1, \ldots,|T s|
$$

Occurrence of symbols for given positions in the word concerning the USNL

Let's identify concepts: with a stem $W c_{i j}$ - the «prefix» and with inflection $W f_{i j}$ - the «suffix» as accepted in informatics.

These are paramount procedures and functions of algorithm:

- pref.show $\left(w_{i j}\right)$ return the current value of prefix for the word $w_{i j}$;
- pref.inc $\left(w_{i j}\right)$ increments the length of prefix for the word $w_{i j}$ by 1 ;
- prefs forms the lists by grouping of wordforms similar in prefix with sorting them by length's decrease;
- pref.check (Prf) for group of wordforms with common prefix Prf carry out analysis of absolute frequencies of occurrence of characters on various positions concerning the word's front and end. Note that the frequency ν_{p} of occurrence of symbol which is the first at the left is always maximal as well as for symbols in Prf. Relative to word's end the search of common suffix's symbols having the occurrence's frequency ν_{p}, is carry out with including them into word's inflection. The total length of common prefix and suffix must be, at least, a one third of word's length, and lengths's difference for a pair of words having a common prefix is always less than half a length of smaller word (independently from suffix!).

Require: $T s$;
Ensure: $P w=\bigcup_{i=1}^{|T s|} P w_{i}$;
$P w:=\varnothing$;
for all $W_{i j}: \odot_{j} W_{i j}=T s_{i}$, where $T s_{i} \in T s$ do
$W c_{i j}:=\left\{W_{i j}[1]\right\} ; W f_{i j}:=\underset{k=2}{\left|W_{i j}\right|} W_{i j}[k] ;$
end for // initialization of stems and inflections
prefs (PrfsTmp);
if $\operatorname{PrfsTmp}=\varnothing$ then
return $P w$ and exit the algorithm;
else
take Prf from PrfsTmp;
if pref.check $(\operatorname{Prf})=$ true then
$P w:=P w \cup\left\{\left(\operatorname{Pr} f, W f_{i j}(\operatorname{Pr} f)\right) \mid\right.$ pref.show $\left.\left(w_{i j}\right)=\operatorname{Prf}\right\} ;$
PrfsTmp:=PrfsTmp $\backslash\{\operatorname{Prf}\} ;$
go to the Step 6;
else
for all $w_{i j}: \operatorname{pref}$.show $\left(w_{i j}\right)=\operatorname{Prf}$ do
pref.inc $\left(w_{i j}\right)$;
end for
go to the Step 5 end if
end if

Models of linear structures for NL-phrases defining the standard

Let $T s$ be a set of SE-phrases defining some USNL according to (1),
J be an index set for invariant parts of words of phrases from Ts.

Definition 3.2

The ordered sequence of indexes of invariant parts of words for some $T s_{i} \in T s$ let's name as Model of its Linear Structure (MLS), $L s\left(T s_{i}\right)$.

Let $\left\{J_{1}, J_{2}\right\}$ be the pair of sequences of indexes in $L s\left(T s_{i}\right)$, where $J_{1}=\left\{j_{1}^{1}, \ldots, j_{2}^{1}\right\}, J_{2}=\left\{j_{1}^{2}, \ldots, j_{2}^{2}\right\}$, and both $\left(j_{1}^{1}, j_{2}^{1}\right)$ and $\left(j_{1}^{2}, j_{2}^{2}\right)$
correspond to the syntactic links.
The sense standard for USNL is defined by those $T s_{i} \in T s$, in MLS of which

$$
\begin{equation*}
\left(J_{1} \subset J_{2}\right) \vee\left(J_{2} \subset J_{1}\right) \vee\left(\left|J_{1} \cap J_{2}\right|=1\right) \vee\left(J_{1} \cap J_{2}\right)=\varnothing \tag{3}
\end{equation*}
$$

and summary length of sequences of mentioned kind for all syntactic links revealed on $T s_{i}$ has to be minimum.

Let $f r\left(w_{j} \mid\right.$ be a frequency of occurrence of word w_{j} in all $T s_{i} \in T s$.
So the most informative words in Ts are forming a cluster Clust:

- the word with a maximal value of this frequency will be in Clust;
- for $\forall\left\{w_{j}, w_{k}\right\} \subset C l u s t$ and $\forall w_{l} \notin C l u s t$ is true that

$$
\begin{align*}
\left(\mid f r\left(w_{j}\right)\right. & -f r\left(w_{k}\right)\left|<\left|f r\left(w_{j}\right)-f r\left(w_{l}\right)\right|\right) \wedge \\
& \wedge\left(\left|f r\left(w_{j}\right)-f r\left(w_{k}\right)\right|<\left|f r\left(w_{k}\right)-f r\left(w_{l}\right)\right|\right)=\text { true } \tag{4}
\end{align*}
$$

The basis of standard are made the phrases with maximum of words in Clust. Here for words from Clust possible synonyms and different orders in a phrase are taking into account.
Let $L S$ be a set of linear structures's models given on J for sentenses from $T s$.

Lemma 5.1

The pair of indexes $\left\{j_{1}, j_{2}\right\} \subset J$ corresponds to synonymic words and can be replaced by one index from $(\mathbb{N} \backslash J)$ if $\exists\left\{L s\left(T s_{1}\right), L s\left(T s_{2}\right)\right\} \subseteq L s$:

$$
L s\left(T s_{1}\right)=J_{1} \odot\left\{j_{1}\right\} \odot J_{2} \text { and } L s\left(T s_{2}\right)=J_{1} \odot\left\{j_{2}\right\} \odot J_{2}
$$

where $J_{1} \subset J, J_{2} \subset J$, and \odot is the concatenation operation at the set J.

Forming the syntactic links

Problem statement

Let $J_{C l}$ be a set of indexes of words related to the cluster of most informative concerning to USNL given by the set of SE-phrases Ts;
$\operatorname{frq}((j, k), L S)$ be the frequency of occurrence of the pair (j, k) in the models from $L S$ taking into account that $(j, k) \Leftrightarrow(k, j)$.
Then USNL's standard is defined by phrases with MLSs belonging to the set

$$
\begin{aligned}
L C= & \bigcup_{i} L S_{i}: L S_{i} \subset L S, \exists\left\{T s_{i}, T s_{j}\right\} \in T s: \\
& L s\left(T s_{i}\right) \in L S_{i} \\
& \left|L s\left(T s_{i}\right) \cap J_{C l}\right| \rightarrow \max \\
& \left(\left(L s\left(T s_{j}\right) \in L S_{i}\right) \wedge\left(T s_{j} \neq T s_{i}\right)\right) \rightarrow\left(L s\left(T s_{i}\right) \cap J_{C l}\right) \subset L s\left(T s_{j}\right),
\end{aligned}
$$

and attributes set's forming for USNL's standard in a form of FC (2) requires:

- to find index pairs $(j, k): \operatorname{frq}((j, k), L S)>1$, which satisfy the condition (3), for all linear structure's models from $L C$;
- to define the direction of syntactic link for each found pair (j, k);
- to eliminate from $\forall L S_{i} \subset L C$ any MLS containing indexes which not appeared in any found link.

Forming the syntactic links

False links and links revealed earlier

There are three stages to find $\operatorname{Dir}(j, k), \operatorname{Dir} \in\{\leftarrow, \rightarrow\}$, namely:

- checking the link corresponding to (j, k) on falsity's condition's fulfilment;
- an attempt to identify with the links revealed earlier;
- if there are no identification with known links then interview with expert.

Let $S t(j), S t(k)$ and $S t(l)$ are the word's stems corresponding to j, k and l.
For given USNL the link for (j, k) is identified as false if $j, k, l \in L s\left(T s_{i}\right)$ in some $T s_{i} \in T$ s, but another USNL has false link for $S t(j)$ and $S t(k)$, and true link either between $S t(j)$ and $S t(l)$ or between $S t(k)$ and $S t(l)$.

Let $L n k$ be a set of links revealed earlier, each of which is represented by:

- an ID number of USNL (Id);
- a main word's stem ($S t_{1}$);
- a stem for dependend word $\left(S t_{2}\right)$;
- a list of inflections combinations «main word-dependent word» (FCm).

A pair (j, k) is put in conformity of link $((j, k), \rightarrow)$ if for some other USNL

$$
\exists\left(I d, S t_{1}, S t_{2}, F C m\right) \in L n k:
$$

$$
S t(j)=S t_{1}, S t(k)=S t_{2} \text { and }(F l(j), F l(k)) \in F C m
$$

Example of initial set of semantically equivalent phrases defining the USNL

27:89 Insert Indent Modified
'Нежелательное переобучение приводит к заниженности эмпирического риска.', 'Нежелательное переобучение, следствием которого является заниженность эмпирического риска.', 'Заниженность эмпирического риска является следствием нежелательного переобучения.'', Заниженность эмпирического риска, являющаяся следствием нежелательного переобучения.' ', 'Эмпирическии́ риск, заниженность которого является следствием нежелательного переобучения.' ', 'Эмпирическии́ риск, заниженныи́ вследствие нежелательного переобучения.'", 'Эмпирический риск, к заниженности которого ведет нежелательное переобучение.'", 'Риск, заниженныи́ как следствие переобучения.' ',
Эмпирическии́ риск по причине, обусловленнои́ нежелательным переобучением, может оказаться заниженным. ",
Эмпирическии́ риск в силу обстоятельств, связанных с нежелательным переобучением, может оказаться заниженным. 'Эмпирическии́ риск по причине, вызваннои́ нежелательным переобучением, может быть заниженным. '", 'Эмпирическии́ риск, к заниженности которого приводит нежелательное переобучение.'', Нежелательное переобучение служит причинои́ заниженности эмпирического риска.',
'Заниженность эмпирического риска, причинои́ которои́ является нежелательное переобучение.'', 'Заниженность эмпирического риска является результатом нежелательного переобучения.' ', 'Нежелательное переобучение, с которым связана заниженность змпирического риска.' ',
'Эмпирическии́ риск, с переобучением связана его заниженность. '",
'Заниженность эмпирического риска связана с переобучением.'', 'Заниженность эмпирического риска, являю щаяся результатом нежелательного переобучения.' 'Нежелательное переобучение, результатом которого является заниженность эмпирического риска.' ',
'Неже лательное переобучение, результат которого есть заниженность эмпирического риска.' ',
'Неже лательное переобучение, приводящее к заниженности эмпирического риска.',
'Нежелательное переобучение, служащее причинои́ заниженности эмпирического риска.',
Заниженность эмпирического риска относится к следствию нежелательного переобучения."',
'Заниженность эмпирического риска связана с нежелательным переобучением.'",
'Нежелательное переобучение является причинои́ заниженности эмпирического риска.' 'Заниженность эмпирического риска, причинои́ которои́ служит нежелательное переобучение.''

Resulting formal context of sense standard and NL-phrases defining standard

Resulting formal context of sense standard and NL-phrases defining standard

Resulting formal context of sense standard and NL-phrases defining standard

Resulting formal context of sense standard and NL-phrases defining standard

П Просмотр фраз из определяющия зталон заданной Сяу
1:1 Insert Indent
Нежелательное переобучение приводит к заниженности эмпирического риска. Нежелательное переобучение служит причинои́ заниженности эмпирического риска.
Заниженность эмпирического риска связана с переобучением.
Заниженность эмпирического риска связана с нежелательным переобучением. Нежелательная переподгонка приводит к заниженности эмпирического риска. Нежелательная переподгонка служит причинои́ заниженности эмпирического риска. Заниженность эмпирического риска связана с переподгонкои́. Заниженность эмпирического риска связана с нежелательнои́ переподгонкои́.

Serial number of USNL, i	1	2	3	4	5	6
Number of SE-phrases defining USNL	56	28	29	30	6	10
\quad including representatives of standard	8	9	7	9	1	2
Initial number of objects for USNL	18	17	15	13	12	14
Initial number of attributes for USNL	177	186	173	162	94	81
Number of standard's objects	9	12	12	11	8	12
Number of standard's attributes	82	90	80	69	35	53

$i \quad$ What does the situation of language usage represents in Russian ?
1 Связь переобучения с эмпирическим риском
2 Связь переусложнения модели с заниженностью средней ошибки на тренировочной выборке
3 Влияние переподгонки на частоту ошибок дерева принятия решений
4 Причина заниженности оценки обобщающей способности алгоритма
5 Зависимость оценки ошибки распознавания от выбора решающего правила
6 Зависимость обобщающей способности логического алгоритма классификации от числа закономерностей алгоритмической композиции

i	1	2	3	4	5	6
n	12	15	16	17	10	14
$\operatorname{vol}(n)$	$4.790 \cdot 10^{8}$	$1.308 \cdot 10^{12}$	$2.092 \cdot 10^{13}$	$3.557 \cdot 10^{14}$	$3.629 \cdot 10^{6}$	$8.718 \cdot 10^{10}$
$\operatorname{vol}_{1}(n)$	648	795	416	442	20	42
$\operatorname{vol}_{2}(n)$	168	225	80	187	20	42

Here:

```
i is the serial number of USNL;
n is the maximal number of words in a phrase;
vol (n)=n! is the estimation which is taken usually;
vol}\mp@subsup{1}{1}{}\mathrm{ and vol2 are the estimations received with application of method
    and algorithms of NL-usage's situation's standard's revelation.
```

Numerically:
$\operatorname{vol}_{1}(n)=l_{1} \cdot n \quad$ is the upper estimation, l_{1} is the number of SE-phrases defining the USNL;
$\operatorname{vol}_{2}(n)=l_{2} \cdot n \quad$ is the lower estimation, l_{2} is the number of SE-phrases defining the standard of USNL.

Let thesaurus to be represented in the form of formal context

$$
\begin{equation*}
K t h=(G t h, M t h, I t h), \tag{5}
\end{equation*}
$$

where Gth consists of symbolic labels of individual NL-usage's situations; $M t h$ includes the attributes of formal context (2) for each $g t h \in G t h$. In addition, in Mth one can distinguish the following subsets:

- M_{6} is the set of indications to objects of formal contexts (2) generated for individual $g t h \in G t h$;
- M_{7} is the set of «stem-inflection»combinations for a syntactically dependent word;
- M_{8} contains combinations of stems of the dependent and main word.

By analogy with the formal context (2) of individual USNL $I t h \subseteq G t h \times M t h$.
example of representation of individual USNL in the thesaurus's formal context
In this case the numerical estimation of similarity of NL-usage situations is determined by the number of attributes be shared by objects of compared situations concerning the formal context of thesaurus.
coordination of knowledge concerning different situations of NL-usage

USNL as an object of the thesaurus's formal context

Coordination of knowledge about synonymy concerning different situations of natural language's usage

Let
St be the designation for word's invariant part identified with the stem; Fl be the designation for word's inflection;
S_{1} and S_{2} be the some situations of givel NL's usage.
Let's suppose that some $W r d$ can be represented as $S t_{1} \odot F l_{1}$ concerning S_{1}, and as $S t_{2} \odot F l_{2}$ - concerning S_{2}. At that $S t_{1}=S t_{2} \odot S f$, where $S f$ contains one symbol as minimum, and \odot is the operation of strings's concatenation.

Then concerning S_{1} the following replacements can be implemented: the stem $S t_{1}$ is replaced with $S t_{2}$, and inflection $F l_{1}$ - with $F l_{3}=S f \odot F l_{2}$ only if the frequencies of occurrence of inflections Fl_{3} and Fl_{2} in all lexicosyntactic links represented by the formal context (5) for given subject area won't decrease at fulfillment of these changes.

Example (in Russian).
USNL №3, $S t_{1}=$ «является», $F l_{1}=«$ »,
USNL №1, $S t_{2}=$ «явля», $F l_{2}=$ «ется», $S f=$ «ется».
Concerning the USNL №3 the replacement of Fl_{1} to $\mathrm{Fl}_{3}=$ «ется» is fulfilled.

Knowledge－control system as the practical issue of developed approach

巴 Тестирование знаний п подготовка к егЗ						
База знаний Тесты Первое знакомство Window Помощь						
可可目 马		（2）				
Испытуемые	Иванов Е．А．	Петров М．Н．	Сидоров Д．л．	Заи́цев Е．A．	Волков А．В．	\triangle
Вопрос 1	0.857	1.000	0.4	1.000	0.857	
Bompoc 2	1.000	0.733	0.868	0.75	0.545	
Bompoc 3	0.75	0.63	0.000	0.703	0.42	
Bompoc 4	0.861	0.861	0.717	0.662	1.000	
Bompoc 5	0.725	0.657	0.000	0.5	0.471	
1］						

Demo－release of system is presented
on the personal webpage of author at www．machinelearning．ru．

Results for a single trainee

Полученныи́ ответ:

Наиболее близкии́ вариант правильного ответа:

Численная оценка близости правильному ответу: 0.63
Оценка за ответ: удовл.

Group testing＇s results after the coordination of knowledge about synonymy concerning the different situations of Russian language＇s usage

巴 Тестирование знаний и подготовка к ЕГЗ						
База знаний Тесты Первое знакомство Window Помощь						
－	困相國	\％				
包 Численные оценки 6лизости правильному ответу						
Испытуемые	Иванов Е．A．	Петров М．Н．	Сидоров Д．Л．	Зайцев E．A．	Волков A．B．	Δ
Вопрос 1	0.857	1.000	0.4	1.000	0.857	
Вопрос 2	1.000	0.733	0.868	0.75	0.545	
Вопрос 3	0.75	0.652	0.000	0.703	0.42	
Вопрос 4	0.913	0.913	0.717	0.595	0.89	
Вопрос 5	0.725	0.657	0.000	0.5	0.471	
4］						

Case 1. Incomplete answer when for all words and their combinations from trainee's answer the prototypes in the most similar «correct» variant were found but for some words of correct answer no prototypes in the trainee's answer were found.
Not-nil value of similarity with the object from the correct answer's USNL's formal context will be only for missed word syntactically submitted to some other word presented both in analyzed and «correct» variant.

Case 2. Orthographic errors (which are admissible) when a word from trainee's answer and a word from the variant of correct answer are the same word's different forms admissible within the frameworks of the same known lexico-syntactic link.

Case 3. «Excess» words when the analyzed answer has a words which hasn't prototypes in «correct» answer's «variant».
In this case the trainee's answer will not be considered as incorrect only if the «excess» words don't appear in any lexico-syntactic link presented in system's knowledge base.

- In offered USNL's conception all kinds of links between main and dependent word were assumed as equally significant.

To apply such estimations in the tasks of testing of knowledge relatively to concrete subject areas it is necessary to re-define the affinity of NL-usage's situations from viewpoint of fuzzy logic.

- Here the systems analysis of structure of professional knowledge for the specific area is necessary for the description of membership functions of fuzzy sets.
- Duquenne-Guigues set of implictions of NL-usage situation's formal context can be a basis of development of strategies and rules of syntactic analysis.
- The offered conception of phrase's linear structure's model can be more versatile at applying the probabilities of coexistence of words in texts related to given subject area and genre.

