Clustering

Victor Kitov

Clustering - Victor Kitov Clustering introduction

Table of Contents

Clustering introduction

K-means

- 3 Hierarchical clustering
- ④ Spectral clustering

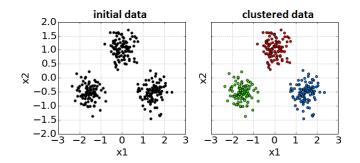
Clustering - Victor Kitov Clustering introduction

Aim of clustering

- Clustering is partitioning of objects into groups so that:
 - inside groups objects are very similar
 - objects from different groups are dissimilar
- Unsupervised learning
- No definition of "similar"
 - different algorithms use different formalizations of similarity

Clustering - Victor Kitov Clustering introduction

Clustering demo



Applications of clustering

- data summarization
 - feature vector is replaced by cluster number
- feature extraction
 - cluster number, distance to native cluster center / other clusters
- customer segmentation
 - e.g. for recommender service
- community detection in networks
 - nodes people, similarity number of connections
- outlier detection
 - outliers do not belong any cluster

Clustering - Victor Kitov K-means

Table of Contents

Clustering introduction

- 3 Hierarchical clustering
- ④ Spectral clustering

K-means algorithm

- Suppose we want to cluster our data into K clusters.
- Cluster *i* has a center μ_i , i=1,2,...K.
- Consider the task of minimizing

$$\sum_{n=1}^{N} \rho(x_n, \mu_{z_n})^2 \to \min_{z_1, \dots, z_N, \mu_1, \dots, \mu_K}$$
(1)

where $z_i \in \{1, 2, ..., K\}$ is cluster assignment for x_i and $\mu_1, ..., \mu_K$ are cluster centers.

- Direct optimization requires full search and is impractical.
- K-means is a suboptimal algorithm for optimizing (1).

K-means algorithm

```
Initialize \mu_j, j = 1, 2, ...K.

repeat while stop condition not satisfied:

for i = 1, 2, ...N:

find cluster number of x_i:

z_i = \arg\min_{j \in \{1, 2, ...K\}} ||x_i - \mu_j||

for j = 1, 2, ...K:

\mu_j = \frac{1}{\sum_{n=1}^{N} \mathbb{I}[z_n = j]} \sum_{n=1}^{N} \mathbb{I}[z_n = j] x_i
```

Dynamic K-means algorithm

Initialize
$$\mu_j$$
, $j = 1, 2, ...K$, $z_i = 0, i = 1, 2, ...N$
repeat while stop condition not satisfied:
for $i = 1, 2, ...N$:
find cluster number of x_i :
 $z'_i = \arg\min_{j \in \{1, 2, ...K\}} ||x_i - \mu_j||$
if $z'_i! = z_i$:
recalculate cluster means μ_{z_i} and $\mu_{z'_i}$:
 $\mu_{z_i} = \frac{1}{\sum_{n=1}^{N} \mathbb{I}[z'_n = z_i]} \sum_{n=1}^{N} \mathbb{I}[z'_n = z_i] x_i$
 $\mu_{z'_i} = \frac{1}{\sum_{n=1}^{N} \mathbb{I}[z'_n = z'_i]} \sum_{n=1}^{N} \mathbb{I}[z'_n = z'_i] x_i$
 $z_i = z'_i$

Converges in less iterations, situation when no objects correspond to some cluster is impossible.

K-means properties

Possible stop conditions:

- cluster assignments $z_1, ... z_N$ stop to change (typical)
- maximum number of iterations reached
- \bullet cluster means $\{\mu_i\}_{i=1}^{K}$ stop changing significantly

Initialization:

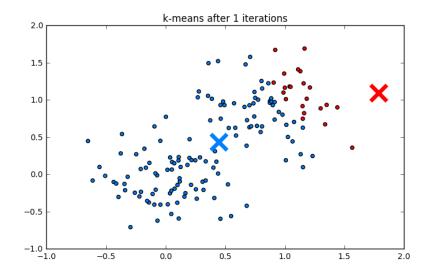
• typically $\{\mu_i\}_{i=1}^{\mathcal{K}}$ are initialized to randomly chosen training objects

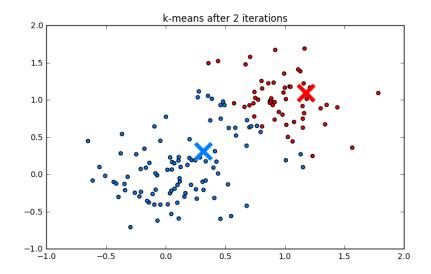
Optimality:

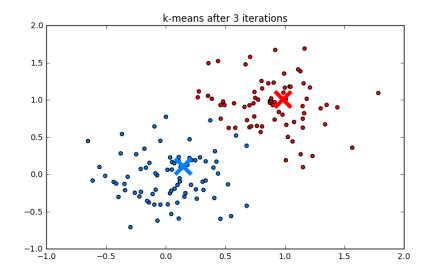
- o criteria is non-convex
- solution depends on starting conditions
- we may restart several times from diff. random starting points and select solution giving minimal value of (1).

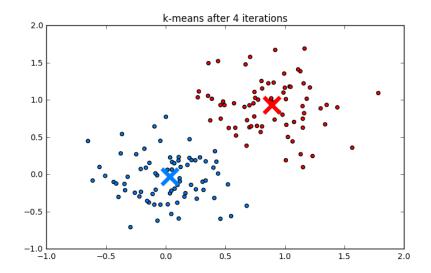
Complexity: O(NDKI), where K is the number of clusters and I is the number of iterations.

• Usually algorithm converges in small number of iterations *I*.









Gotchas

• K-means assumes that clusters are convex:

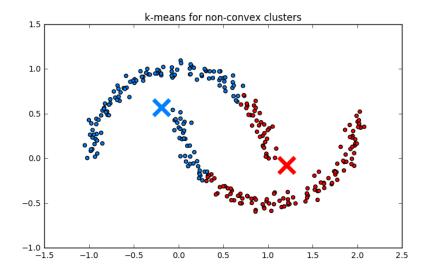
K-means clustering on the digits dataset (PCA-reduced data) Centroids are marked with white cross

- It always finds clusters even if none actually exist
 - need to control cluster quality metrics

Clustering - Victor Kitov

K-means

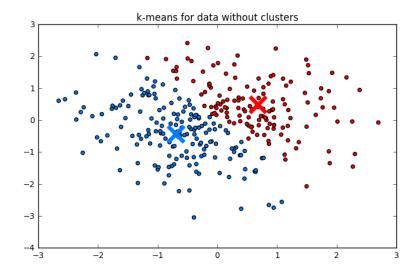
K-means for non-convex clusters



Clustering - Victor Kitov

K-means

K-means for data without clusters



K-means and EM algorithm

```
Initialize \mu_j, j = 1, 2, ...K.

repeat while stop condition not satisfied:

for i = 1, 2, ...N:

find cluster number of x_i:

z_i = \arg\min_{j \in \{1, 2, ..., g\}} ||x_i - \mu_j||

for j = 1, 2, ...K:

\mu_j = \frac{1}{\sum_{n=1}^{N} \mathbb{I}[z_n = j]} \sum_{n=1}^{N} \mathbb{I}[z_n = j]x_i
```

• K-means is EM-algorithm when:

K-means and EM algorithm

```
Initialize \mu_j, j = 1, 2, ...K.

repeat while stop condition not satisfied:

for i = 1, 2, ...N:

find cluster number of x_i:

z_i = \arg\min_{j \in \{1, 2, ..., g\}} ||x_i - \mu_j||

for j = 1, 2, ...K:

\mu_j = \frac{1}{\sum_{n=1}^{N} \mathbb{I}[z_n = j]} \sum_{n=1}^{N} \mathbb{I}[z_n = j] x_i
```

- K-means is EM-algorithm when:
 - applied to Gaussians
 - with equal priors
 - with unity covariance matrices
 - with hard clustering

Clustering - Victor Kitov Hierarchical clustering

Table of Contents

Clustering introduction

2 K-means

- Hierarchical clustering
- ④ Spectral clustering

Clustering - Victor Kitov Hierarchical clustering

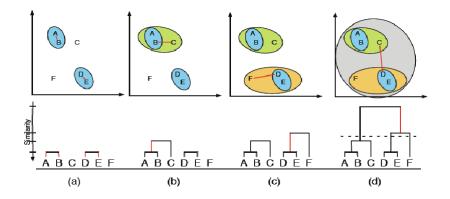
Hierarchical clustering

Hierarchical clustering may be:

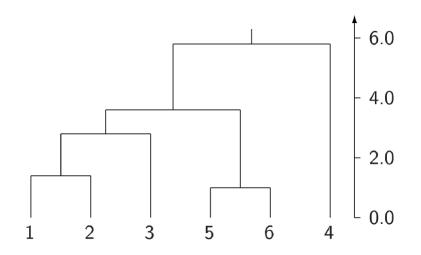
- top-down
 - hierarchical K-means
- bottom-up
 - agglomerative clustering

Clustering - Victor Kitov Hierarchical clustering

Bottom-up clustering demo



Agglomerative clustering



Agglomerative clustering - distances

- Consider clusters $A = \{x_{i_1}, x_{i_2}, ...\}$ and $B = \{x_{j_1}, x_{j_2}, ...\}$.
- We can define the following natural distances
 - nearest neighbour (or single link)

$$\rho(A,B) = \min_{a \in A, b \in B} \rho(a,b)$$

• furthest neighbour (or complete-link)

$$\rho(A,B) = \max_{a \in A, b \in B} \rho(a,b)$$

• group average link

 $\rho(A, B) = \text{mean}_{a \in A, b \in B} \rho(a, b)$ • centroid distance $(\mu_U = \frac{1}{|U|} \sum_{x \in U} x)$ $\rho(A, B) = \rho(\mu_A, \mu_B)$ • median distance $(m_U = median_{x \in U} \{x\})$ $\rho(A, B) = \rho(m_a, m_b)$

Agglomerative clustering - distance properties

- Suppose we modify distance $\rho(x, x')$ with monotone transformation $F: \rho'(x, x') = F(\rho(x, x'))$. Which of the cluster distances will not be affected by this change?
- Lance-Williams recurrence formula:
 - $\rho(A \cup B, C)$ can be computed in O(1) time using $\rho(A, C), \rho(B, C)$ and $\rho(A, B)$

Agglomerative clustering - distance properties

- nearest neighbour may create stretched clusters
- furtherst neighbour creates very compact clusters.
- group average link, centroid and median distance give the compromise.
- however centroid and median distance may lead to non-monotonous joining distance sequences in agglomerative algorithm.
- in short group average link is preferred.

Clustering - Victor Kitov Spectral clustering

Table of Contents

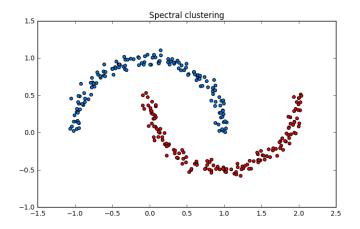
Clustering introduction

2 K-means

- 3 Hierarchical clustering
- 4 Spectral clustering

Clustering - Victor Kitov Spectral clustering

Spectral clustering - example



Description

- Spectral clustering relies upon similarity matrix *W* between objects.
- Similarity matrix <-> weighted connection graph
- Examples:
 - nodes represent people, edge weights how much they communicate
 - nodes represent web-pages, edge weights scalar products of TF IDF

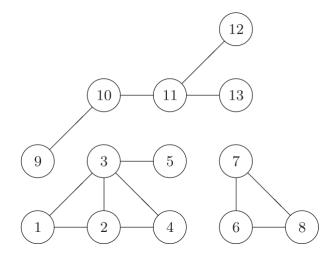
Clustering - Victor Kitov Spectral clustering

Similarity matrix calculation

- $||x_i x_j|| < threshold$
- RBF
- based on nearest neighbours

Clustering - Victor Kitov Spectral clustering

Graph with disjoint components



Graph Laplacian

- W = W^T, w_{ij} ≥ 0 the similarity between object i and object j.
- Define $D = \text{diag}\{d_1, \dots d_N\}$, where $d_i = \sum_{j=1}^N w_{ij}$ -weighted degree of node *i*.
- Define graph Laplacian

$$L = D - W$$

- Properties of graph Laplacian:
 - it is symmetric
 - It has eigenvector 1 ∈ ℝ^N consisting of ones with eigenvalue 0. Why?
 - it is positive semi-definite: $\forall f \in \mathbb{R}^N : f^T L f \ge 0$.
 - L has eigenvalues $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_N = 0$

Positive semi-definiteness of Laplacian

Consider arbitrary $f \in \mathbb{R}^N$:

$$f^{T}Lf = f^{T}Df - f^{T}Wf = \sum_{i} d_{i}f_{i}^{2} - \sum_{i,j} f_{i}f_{j}w_{ij} = \frac{1}{2}\left(\sum_{i} d_{i}f_{i}^{2} - 2\sum_{i,j} w_{ij}f_{i}f_{j} + \sum_{j} d_{j}f_{j}^{2}\right) = \frac{1}{2}\left(\sum_{i,j} w_{ij}f_{i}^{2} - 2\sum_{i,j} w_{ij}f_{i}f_{j} + \sum_{j,i} w_{ji}f_{j}^{2}\right) = \frac{1}{2}\left(\sum_{i,j} w_{ij}f_{i}^{2} - 2\sum_{i,j} w_{ij}f_{i}f_{j} + \sum_{i,j} w_{ij}f_{j}^{2}\right) = \frac{1}{2}\sum_{i,j} w_{ij}(f_{i} - f_{j})^{2} \ge 0$$

32/38

Eigenvectors of Laplacian

• Consider eigenvector f corresponding to eigenvalue $\lambda = 0$.

•
$$f^T L f = \lambda f^T f = 0$$

Using (2) we have that

$$0 = f^{T} L f = \frac{1}{2} \sum_{i,j} w_{i,j} (f_{i} - f_{j})^{2}$$
(3)

- If objects *i* and *j* are connected on the graph, there exists a path with $w_{uv} > 0$ along the path and from (3) it should be that $f_i = f_j$.
- So the set of eigenvectors of L is spanned by indicator vectors $I_{A_1}, I_{A_2}, \dots I_{A_K}$ where A_i is *i*-th isolated region on the graph.
- Order of $\lambda = 0$ gives the number of isolated components.

Spectral clustering algorithm:

- **1** Find order K of $\lambda = 0$
- 2 Find set of eigenvectors $v_1, ... v_K$ corresponding to $\lambda = 0$
- Cluster rows of $V = [v_1, ... v_K]$
- Each row corresponds to object with the same index. Found clustering is the final clustering of initial objects.

Spectral clustering (unnormalized)

Unnormalized spectral clustering

Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct.

- \bullet Construct a similarity graph by one of the ways described in Section 2. Let W be its weighted adjacency matrix.
- Compute the unnormalized Laplacian L.
- Compute the first k eigenvectors u_1, \ldots, u_k of L.
- Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors u_1, \ldots, u_k as columns.
- \bullet For $i=1,\ldots,n,$ let $y_i\in \mathbb{R}^k$ be the vector corresponding to the i-th row of U .
- Cluster the points $(y_i)_{i=1,\ldots,n}$ in \mathbb{R}^k with the k-means algorithm into clusters C_1,\ldots,C_k .

Output: Clusters A_1, \ldots, A_k with $A_i = \{j | y_j \in C_i\}$.

Practical application

• $L' = D^{-1}L$ is considered instead of L ("Normalized" Laplacian)

• to account for different connectivity levels of different nodes

- Most often singular values of L' are not exactly zero, but close to zero. So we select K smallest eigenvalues and corresponding K smallest eigenvectors.
- 2 Cluster rows of $[v_1, ... v_K]$
- Found clustering is applied to objects with the same indexes.

Normalized spectral clustering

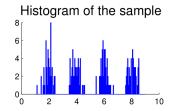
Normalized spectral clustering according to Shi and Malik (2000)

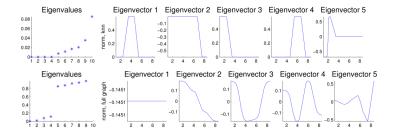
Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct.

- Construct a similarity graph Let W be its weighted adjacency matrix.
- Compute the unnormalized Laplacian L.
- Compute the first k eigenvectors u_1, \ldots, u_k of the generalized eigenproblem $Lu = \lambda Du$.
- Let $U \in \mathbb{R}^{n imes k}$ be the matrix containing the vectors u_1, \ldots, u_k as columns.
- \bullet For $i \ = \ 1, \ldots, n$, let $y_i \ \in \ \mathbb{R}^k$ be the vector corresponding to the i-th row of U .
- Cluster the points $(y_i)_{i=1,\ldots,n}$ in \mathbb{R}^k with the k-means algorithm into clusters C_1,\ldots,C_k .

Output: Clusters A_1, \ldots, A_k with $A_i = \{j | y_j \in C_i\}$.

Example





38/38