Прикладной статистический анализ данных. 5. Дисперсионный анализ.

Рябенко Евгений riabenko.e@gmail.com

3 октября 2014 г.

- По числу факторов: однофакторный (one-way), двухфакторный (two-way) и т. д.
- По типу выборок: независимые (between-subjects), связанные (within-subjects, repeated measurements).
- По типу альтернативы: общая, тренда.
- По типу эффектов: случайные (random-effects), фиксированные (fixed-effects).
- По типу уровней факторов: независимые, вложенные (nested). с болтающимся контролем (dangling control group), латинский квадрат (latin square).
- По используемым предположениям: нормальный, непараметрический.
- По объёму выборок: одинаковый (balanced), различный (unbalanced).

Пусть имеется K выборок:

1-way b.s.

•000000000000

$$X^{N} = X_{1}^{n_{1}} \bigcup X_{2}^{n_{2}} \bigcup \ldots \bigcup X_{K}^{n_{K}}, \ N = \sum_{i=1}^{K} n_{i}.$$

Эквивалентная запись: фактор $f: X \to \{1, \ldots, K\}$

Задача: проверить гипотезу об отсутствии влияния фактора f на среднее значение признака X, то есть, о равенстве средних значений K выборок.

•00000000000

Идея: рассмотрим две компоненты разброса значений X_{ki} относительно глобального среднего \bar{X} :

$$X_{ki} - \bar{X} = \left(X_{ki} - \bar{X}_k\right) + \left(\bar{X}_k - \bar{X}\right),\,$$

где \bar{X}_k — среднее в k-й выборке.

Возведём в квадрат и просуммируем:

$$\sum_{k=1}^{K} \sum_{i=1}^{n_k} (X_{ki} - \bar{X})^2 = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (X_{ki} - \bar{X}_k)^2 + \sum_{k=1}^{K} n_k (\bar{X}_k - \bar{X})^2,$$

$$SS_{total} = SS_{wg} + SS_{bg}.$$

Если средние в группах значительно отличаются, преобладает вторая компонента, если же они одинаковы — первая.

Линейная модель:

1-way b.s.

•000000000000

$$X_{ki} = \mu + \alpha_k + \varepsilon_{ki}$$

$$i = 1, \ldots, n_k, \ k = 1, \ldots, K.$$

 μ — глобальное среднее значение признака X,

 α_k — отклонение от μ , вызванное влиянием k-го уровня фактора f,

 $arepsilon_{ki}$ — случайные независимые одинаково распределённые ошибки.

Средние значения X во всех K выборках одинаковы $\Leftrightarrow \alpha_1 = \cdots = \alpha_K$.

000000000000

выборки:
$$X^N = X_1^{n_1} \bigcup \ldots \bigcup X_K^{n_K};$$

 $H_0: \alpha_1 = \cdots = \alpha_K;$ нулевая гипотеза:

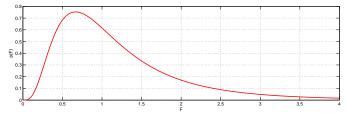
 $H_1: H_0$ неверна; альтернатива:

 $F(X^N) = \frac{SS_{bg}/(K-1)}{SS_{wg}/(N-K)},$ статистика:

$$SS_{bg} = \sum_{k=1}^{K} n_k (\bar{X}_k - \bar{X})^2,$$

$$SS_{wg} = \sum_{k=1}^{K} \sum_{k=1}^{n_k} (X_{ki} - \bar{X}_k)^2,$$

$$F\left(X^N
ight) \sim F(K-1,N-K)$$
 при $H_0.$



Критерий Фишера

1-way b.s.

0000000000000

Пример: топливная компания тестирует влияние трёх видов присадок на потребление бензина. Выборка получена на 12 одинаковых автомобилях, на каждом из которых использовалась одна из трёх присадок.

 H_0 : все три вида присадок одинаково влияют на среднее потребление бензина.

 H_1 : между средними уровнями потребления бензина с разными присадками есть различия $\Rightarrow p = 2.1717 \times 10^{-5}$.

0000000000000

Предположения метода:

- выборочные распределения средних значений признака во всех группах нормальны;
- дисперсия значений признака во всех группах одинакова;
- наблюдения независимы.
 - Первое предположение считается выполненным, если распределение признака во всех группах нормально, или если объёмы выборок примерно одинаковы и $N-K-1 \ge 20$.
 - Второе предположение считается выполненным, если отношение наибольшей выборочной дисперсии к наименьшей не превосходит 10.
 - При $n_1 = \cdots = n_K$ метод устойчив к нарушению первых двух предположений.
 - Если объёмы выборок различаются, нарушение предположения о равенстве дисперсий может привести к росту вероятности ошибки первого рода.
 - Выбросы могут оказывать существенное влияние на результат.

0000000000000

выборки:
$$X^N = X_1^{n_1} \bigcup ... \bigcup X_K^{n_K}, X_k \sim F(x + \Delta_k);$$

нулевая гипотеза: $H_0: \Delta_1 = \Delta_2 = \ldots = \Delta_K$:

 $H_1: H_0$ неверна; альтернатива:

статистика:
$$K\left(X^{N}\right) = (N-1) \frac{\sum\limits_{k=1}^{K} n_{k} (\bar{r}_{k} - \bar{r})^{2}}{\sum\limits_{k=1}^{K} \sum\limits_{i=1}^{n_{k}} (r_{ki} - \bar{r})^{2}}, \ r_{ki} \equiv \operatorname{rank}\left(X_{ki}\right),$$

 $K(X^N)$ имеет табличное распределение при H_0 .

Если нет связок, то:

$$\bar{r} = \frac{N-1}{2},$$

$$\sum_{k=1}^{K} \sum_{i=1}^{n_k} (r_{ki} - \bar{r})^2 = \frac{(N-1)N(N+1)}{12},$$

$$K\left(X^N\right) = \frac{12}{N(N+1)} \sum_{k=1}^{K} n_k \bar{r}_k^2 - 3(N+1).$$

Аппроксимация для $n_k > 5$:

$$K\left(X^N\right) \sim \chi_{K-1}^2.$$

Критерий Краскела-Уоллиса

Пример: дегустаторы оценивают торты по совокупности факторов — вкус, внешний вид, запах и фактура. Итоговая оценка выставляется в баллах от 0 до 100. Сравниваются оценки трёх видов тортов, представленных каждый отдельной команде дегустаторов.

 H_0 : оценки трёх видов тортов в среднем одинаковы.

 H_1 : между оценками разных видов тортов есть различия $\Rightarrow p = 0.6587$.

Критерий Джонкхиера

1-way b.s.

000000000000

выборки:
$$X^N = X_1^{n_1} \bigcup ... \bigcup X_K^{n_K}, \ X_k \sim F(x + \Delta_k);$$

нулевая гипотеза:
$$H_0$$
: $\Delta_1 = \Delta_2 = \ldots = \Delta_K$

$$\Rightarrow \operatorname{med} X_1 = \ldots = \operatorname{med} X_K;$$

альтернатива:
$$H_1 \colon \operatorname{med} X_1 \le \ldots \le \operatorname{med} X_K$$
;

статистика:
$$S(X^N) = \sum_{k=1}^K \sum_{i=1}^{n_k} a_{ki}$$
,

 a_{ki} — число наблюдений из первых k-1 выборок,

меньших, чем X_{ki} ;

 $S\left(X^{N}\right)$ имеет табличное распределение при H_{0} .

Аппроксимация для $n_k > 10$:

$$\begin{split} S\left(\boldsymbol{X}^{N}\right) &\sim N\left(\mu, \sigma^{2}\right), \\ \mu &= \frac{1}{4}\left(N^{2} - \sum_{k=1}^{K} n_{k}^{2}\right), \\ \sigma &= \frac{1}{72}\left(N^{2}\left(2N + 3\right) - \sum_{k=1}^{K} n_{k}^{2}\left(2n_{k} + 3\right)\right). \end{split}$$

Критерий Джонкхиера

1-way b.s.

000000000000

Пример: исследуется влияние информированности (знания цели работы) на выполнение монотонных производственных операций. 18 рабочих были случайным образом разделены на 3 группы. Попавшие в группу 1 не имели информации о требуемой производительности, в группу 2 получили общее представление о том, что нужно делать, в группу 3 точную информацию о задании и график выполнения работ.

информированность не влияет на производительность.

информированность влияет на производительность $\Rightarrow p = 0.113$.

 H_1 : информированность повышает производительность $\Rightarrow p = 0.022$.

3-way b.s.

- Характеристика, определяющая разбиение на группы, не представляет непосредственного интереса.
- Группы случайно выбраны из множества возможных групп.
- Если между группами есть неоднородность, ожидается, что она сохранится при повторе эксперимента, но соотношения между средними могут измениться.

Примеры.

- Размеры горбаток в разных семьях, выращенных на одном и том же растении; цель — определить значимость фактора семьи для дальнейших исследований.
- Уровень гликогена в различных образцах икроножной мышцы крысы; если вариация между образцами даёт маленький вклад в общую вариацию, то можно считать, что для измерения уровня достаточно одного образца.
- Вкусовые качества персиков с 10 различных деревьев; планируется сравнить различия во вкусовых качествах персиков с разных деревьев с различиями у персиков с одного дерева. Если последние больше, то бессмысленно выбрать для размножения дерево с лучшей средней оценкой.

3-way b.s.

Модель со случайным эффектом

Если используется **модель со случайным эффектом**, следующий шаг — разделение дисперсий на внутригрупповые и межгруповые.

Доля межгрупповой дисперсии в общей дисперсии выборки:

$$\eta^2 = \frac{SS_{bg}}{SS_{total}};$$

в популяции:

$$\hat{\omega}^{2} = \frac{SS_{bg} - SS_{wg}(K - 1) / (N - K)}{SS_{total} + SS_{wg} / (N - K)}.$$

- Разбиение на группы определено до получения данных.
- При повторе эксперимента ожидается, что соотношения между средними групп сохранятся.
- Если между средними есть различия, на следующем этапе анализируется, какие именно группы различаются.

Примеры.

1-way b.s.

- Продолжительность жизни разноногих раков в морской воде и растворах глюкозы и маннозы.
- Экспрессия определённого гена в тканях мозга, печени, лёгких и мышц; необходимо понять, в какой ткани экспрессия выше.
- Вкусовые качества персиков с 10 различных деревьев; планируется выбрать лучшее дерево для дальнейшего разведения.

0000000000000

Если используется модель с фиксированным эффектом, то, в случае отвержения гипотезы однородности средних, проводится дополнительное сравнение с целью уточнения характера различий. Сравнение может быть:

- запланированным, когда группы для дальнейшего сравнения отобраны до сбора данных.
- незапланированным, когда группы для сравнения выбираются по результатам первичного анализа данных.

Для запланированного попарного сравнения групп можно просто использовать подходящий двухвыборочный критерий. Для незапланированного сравнения всё сложнее.

LSD Фишера (Least Significant Difference)

Если
$$\alpha_i = \alpha_j$$
, то

1-way b.s.

0000000000000

$$\frac{\bar{X}_i - \bar{X}_j}{S\sqrt{\frac{1}{n_i} + \frac{1}{n_j}}} \sim St\left(n_i + n_j - 2\right),$$

где
$$S^2 = \frac{(n_i - 1)S_i^2 + (n_j - 1)S_j^2}{n_i + n_j - 2}$$
.

Рассмотрим величину

$$LSD_{ij} = \frac{t_{\alpha}S}{\sqrt{\frac{1}{n_i} + \frac{1}{n_j}}},$$

где $t_{\alpha}-\alpha$ -квантиль распределения Стьюдента с n_i+n_j-2 степенями свободы.

Если $\left| \bar{X}_i - \bar{X}_j \right| > LSD_{ij}$, то частная нулевая гипотеза $H_0 \colon \alpha_i = \alpha_j$ отклоняется против двусторонней альтернативы.

LSD можно использовать только в случае отвержения общей гипотезы однородности.

HSD Тьюки (Honest Significant Difference)

1-way b.s.

00000000000000

$$n = \frac{K}{\sum_{k=1}^{K} \frac{1}{n_k}},$$

$$S^2 = \frac{1}{N - K} \sum_{k=1}^{K} (n_k - 1) S_k^2,$$

где S_k^2 — дисперсия выборки $X_k^{n_k}$,

$$HSD = \frac{q_{\alpha} (N - K) S}{\sqrt{n}},$$

где $q_{\alpha}\left(N-K\right)$ — критическое значение распределения стьюдентизированного размаха с N-K степенями свободы.

Если $\left| \bar{X}_i - \bar{X}_j \right| > HSD$, то частная нулевая гипотеза $H_0\colon \alpha_i = \alpha_j$ отклоняется против двусторонней альтернативы.

HSD можно использовать независимо от справедливости общей гипотезы однородности.

Критерий Неменьи

Ранговый аналог HSD.

$$CD = q_{\alpha}' \sqrt{\frac{K(K+1)}{6N}},$$

где q_{α}' — критическое значение статистики критерия, основанное на распределении стьюдентизированного размаха.

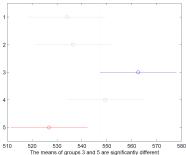
Если $|\bar{r}_i - \bar{r}_j| > CD$, то частная нулевая гипотеза $H_0\colon \Delta_i = \Delta_j$ отклоняется против двусторонней альтернативы.

00000000000000

1-way b.s.

Овсяная мука пяти видов помола расфасовывается при помощи одного диспенсера. Стандартный объём упаковки — 500 г, но диспенсер обычно насыпает больше. Производитель подозревает, что объём упаковки может зависеть от помола муки.

Метод LSD: вес в группах 3 и 5 значимо отличается.



Метод HSD: значимых различий между средними не обнаружено.

0000000000000

выборки:
$$X^N = X_1^{n_1} \bigcup ... \bigcup X_K^{n_K}, \ X_{ki} \sim N\left(\mu_k, \sigma_k^2\right);$$

 $H_0: \sigma_1 = \sigma_2 = \ldots = \sigma_K;$ нулевая гипотеза:

 $H_1: H_0$ неверна; альтернатива:

статистика:
$$B\left(X^N\right) = \frac{\ln 10}{C} \left((N-K) \ln S^2 - \sum_{k=1}^K \left(n_k-1\right) \ln S_k^2 \right),$$

$$S^2 = \frac{1}{N-K} \sum_{k=1}^K \left(n_k-1\right) S_k^2,$$

$$C = 1 + \frac{1}{3K+1} \left(\sum_{k=1}^K \frac{1}{n_k-1} - \frac{1}{N} \right);$$

$$B\left(X^N\right)$$
 имеет табличное распределение при H_0 .

Аппроксимация для $n_k > 6$:

$$B\left(X^N\right) \sim \chi^2_{K-1}.$$

Критерий Бартлета

1-way b.s.

000000000000000

Пример: четыре шпиндельные головки сравниваются по вариабельности размеров деталей, которые выточены с их помощью. Контролёром качества собраны выборки из 31, 15, 20 и 42 деталей.

 H_0 : дисперсия размеров деталей, выточенных с помощью различных головок, одинакова.

 H_1 : дисперсия размеров деталей, выточенных с помощью различных головок, неодинакова $\Rightarrow p = 0.0626$.

Критерий квадратов рангов

1-way b.s.

выборки:
$$X^{N} = X_{1}^{n_{1}} \bigcup ... \bigcup X_{K}^{n_{K}}, X_{ki} \sim F(\mu_{k} + \sigma_{k}x);$$

нулевая гипотеза:
$$H_0: \sigma_1 = \sigma_2 = \ldots = \sigma_K;$$

 $H_1: H_0$ неверна; альтернатива:

статистика:
$$T_2\left(X^N\right) = \frac{1}{D^2}\left(\sum_{k=1}^K \frac{S_k^2}{n_k} - N\bar{S}^2\right),$$
 $S_k = \sum_{i=1}^{n_k} r\left(\left|X_{ki} - \bar{X}_k\right|\right)^2,$ $\bar{S} = \frac{1}{N}\sum_{k=1}^K S_k,$ $D^2 = \frac{1}{N-1}\left(\sum_{i=1}^N r_i^4 - N\bar{S}^2\right);$ $T_2\left(X^N\right)$ имеет табличное распре

 $T_2(X^N)$ имеет табличное распределение при H_0 .

Если нет связок, то:

$$\bar{S} = \frac{1}{6} (N+1) (2N+1),$$

$$D^2 = \frac{1}{180} N (N+1) (2N+1) (8N+11).$$

Аппроксимация для $n_k > 10$:

$$T_2\left(X^N\right) \sim \chi^2_{K-1}.$$

00000000000000

Пример: четыре шпиндельные головки сравниваются по вариабельности размеров деталей, которые выточены с их помощью. Контролёром качества собраны выборки из 31, 15, 20 и 42 деталей.

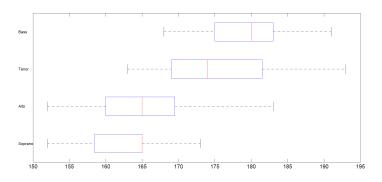
 H_0 : дисперсия размеров деталей, выточенных с помощью различных головок, одинакова.

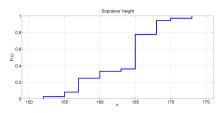
 H_1 : дисперсия размеров деталей, выточенных с помощью различных головок, неодинакова $\Rightarrow p = 0.0856$.

0000000000000

В 1979 году 130 участников Нью-Йоркской ассоциации хорового пения сообщили данные своего роста; для каждого известен также регистр голоса. Есть ли связь между ростом и регистром?

Vocal Ranges





Рост певцов хора

1-way b.s.

0000000000000

 H_0 : рост и регистр голоса не связаны.

 H_1 : для каких-то видов регистра голоса средний рост отличается.

Source	SS	df	MS	F	$Prob{>}F$
Groups	6901.4	3	2300.47	55.73	5.34718e - 023
Error	5201.1	126	41.28		
Total	12102.5	129			

SS — сумма квадратов отклонений, df — число степеней свободы, MS средний квадрат отклонений, F — статистика критерия; строка Groups — оценки по выборочным средним, строка Error — оценки по выборочным дисперсиям.

0000000000000

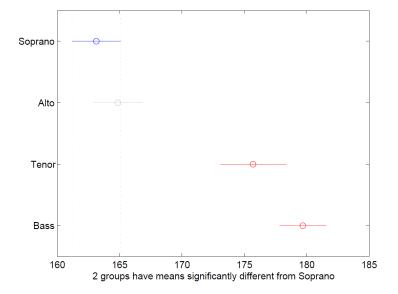
Критерий Стьюдента для проверки гипотезы равенства роста певцов с альтом и сопрано: p = 0.2460 — против двусторонней альтернативы, p = 0.1230 — против односторонней альтернативы.

Критерий Стьюдента для проверки гипотезы равенства роста певцов с тенором и басом: p = 0.0597 — против двусторонней альтернативы, p = 0.0298 — против односторонней альтернативы.

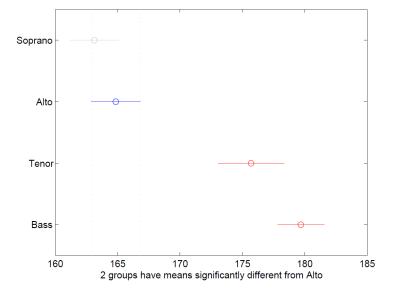
Критерий Джонкхиера для проверки наличия тренда (увеличение роста с понижением регистра голоса): p < 0.00001.

3-way b.s.

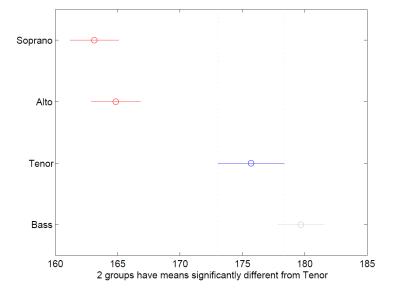
1-way b.s.



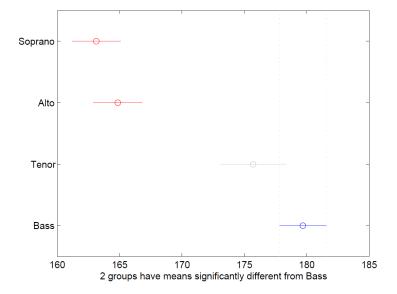
1-way b.s.



1-way b.s.



1-way b.s.



Двухфакторный дисперсионный анализ

$$f_1: X \to \{1, \dots, K_1\}, f_2: X \to \{1, \dots, K_2\}$$

f_1	1	 j	 K_2
1			
i		X_{ij1} \vdots $X_{ijn_{ij}}$	
:			
K_1			

Задача: проверить гипотезу об отсутствии влияния факторов f_1 и f_2 на среднее значение признака X.

Случай выборок разного размера для двух факторов значительно сложнее, поэтому будем считать, что $n_{11} = \ldots = n_{K_1 K_2} = n$.

Двухфакторный дисперсионный анализ

Линейная модель:

1-way b.s.

$$X_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk},$$

$$i = 1, \ldots, K_1, \ j = 1, \ldots, K_2, \ k = 1, \ldots, n.$$

 μ — общее среднее значение признака,

 α_i — воздействие уровня i фактора f_1 ,

 eta_j — воздействие уровня j фактора f_2 ,

 γ_{ij} — дополнительное воздействие комбинации уровней i и j факторов f_1 и f_2 ,

 $arepsilon_{ijk}$ — случайные независимые одинаково распределённые ошибки.

 H_0^1 : фактор f_1 не влияет на значение признака $X \Leftrightarrow$ $\alpha_i = 0 \ \forall i$

 H_1^1 : f_1 влияет на значение X:

 H_0^2 : фактор f_2 не влияет на значение признака $X \Leftrightarrow$ $\beta_i = 0 \ \forall i$

 H_1^2 : f_2 влияет на значение X:

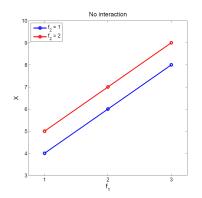
 H_0^{12} : между факторами f_1, f_2 нет взаимодействия \Leftrightarrow $\gamma_{i,i} = 0 \ \forall i, j,$

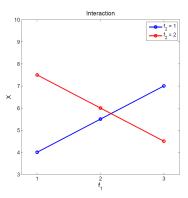
 H_1^{12} : между факторами f_1, f_2 есть взаимодействие.

Двухфакторный дисперсионный анализ

1-way b.s.

Пример: X — успешность решения задачи (в баллах от 0 до 10), f_1 — размер команды (1 — маленькая, 2 — средняя, 3 — большая), f_2 — наличие назначенного лидера (1 — нет, 2 — есть).





Нормальный двухфакторный дисперсионный анализ

Предположим, что $X_{ijk} \sim N\left(\mu_{ij}, \sigma^2\right) \Leftrightarrow \varepsilon_{ijk} \sim N\left(0, \sigma^2\right)$.

 X_{ij} — среднее в ячейке,

1-way b.s.

 $\bar{X}_{i\bullet}$ — среднее по строке i,

 $\bar{X}_{\bullet j}$ — среднее по столбцу j,

 \bar{X} — среднее по всей таблице.

Внутрифакторные дисперсии:

$$S_{1}^{2} = \frac{nK_{2}}{K_{1} - 1} \sum_{i=1}^{K_{1}} (\bar{X}_{i \bullet} - \bar{X})^{2},$$

$$S_{2}^{2} = \frac{nK_{1}}{K_{2} - 1} \sum_{i=1}^{K_{2}} (\bar{X}_{\bullet j} - \bar{X})^{2},$$

$$S_{12}^{2} = \frac{n}{(K_{1} - 1)(K_{2} - 1)} \sum_{i,j} (\bar{X}_{ij} - \bar{X}_{i \bullet} - \bar{X}_{\bullet j} + \bar{X})^{2},$$

$$S_{res}^{2} = \frac{1}{K_{1}K_{2}(n - 1)} \sum_{k=1}^{n} \sum_{i,j} (X_{ijk} - \bar{X}_{ij})^{2}.$$

Нормальный двухфакторный дисперсионный анализ

Проверка значимости факторов и их взаимодействия:

• n > 1:

1-way b.s.

$$\begin{split} F_1 &= \frac{S_1^2}{S_{res}^2} \sim F\left(K_1 - 1, K_1 K_2 \left(n - 1\right)\right) \text{ при } H_0^1, \\ F_2 &= \frac{S_2^2}{S_{res}^2} \sim F\left(K_2 - 1, K_1 K_2 \left(n - 1\right)\right) \text{ при } H_0^2, \\ F_{12} &= \frac{S_{12}^2}{S_{res}^2} \sim F\left(\left(K_1 - 1\right) \left(K_2 - 1\right), K_1 K_2 \left(n - 1\right)\right) \text{ при } H_0^{12}; \end{split}$$

• n = 1:

$$F_1=rac{S_1^2}{S_{12}^2}\sim F\left(K_1-1,\left(K_1-1
ight)\left(K_2-1
ight)
ight)$$
 при $H_0^1,$ $F_2=rac{S_2^2}{S_{12}^2}\sim F\left(K_2-1,\left(K_1-1
ight)\left(K_2-1
ight)
ight)$ при $H_0^2.$

При этом подразумевается, что H_0^{12} верна.

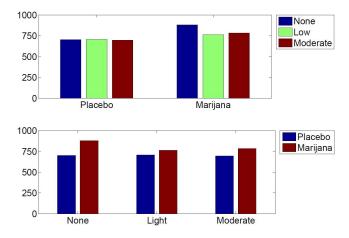
Изучалось воздействие марихуаны на скорость реакции. В качестве испытуемых были выбраны по 12 человек из каждой категории:

- никогда не пробовали марихуану;
- иногда употребляют марихуану;
- регулярно употребляют марихуану.

Испытуемые были разделены на две равные группы; половине из них дали выкурить две сигареты с марихуаной, вторая половина выкурила две обычные сигареты с запахом и вкусом марихуаны. Сразу после этого все испытуемые прошли тест на скорость реакции.

Требуется оценить влияние марихуаны на скорость реакции, учитывая фактор предыдущего опыта употребления.

Марихуана и скорость реакции



Марихуана и скорость реакции

1-way b.s.

- H_0^1 : средняя скорость реакции одинакова при употреблении и марихуаны, и сигарет.
- H_0^2 : средняя скорость реакции не зависит от предыдущего опыта употребления марихуаны.
- H_0^{12} : отсутствует межфакторное взаимодействие между употребляемым веществом и предыдущим опытом употребления марихуаны.

Source	SS	df	MS	F	Prob>F
Group	103041	1	103041	17.58	0.0002
Past use	23634.5	2	11817.2	2.02	0.1508
Interaction	23642.2	2	11821.1	2.02	0.1507
Error	175796.3	30	5859.9		
Total	326114	35			

Вывод: гипотеза о том, что предыдущий опыт употребления не влияет на скорость реакции, не отклоняется ⇒ данные по группам можно объединить.

Для объединённых данных:

- однофакторный дисперсионный анализ: p = 0.00036;
- критерий Уилкоксона, двусторонняя альтернатива: p = 0.000596;
- критерий Стьюдента, односторонняя альтернатива: $p = 0.00018, ci = (61.3, \infty);$

Стандартная постановка двухфакторного дисперсионного анализа предполагает, что уровни факторов в выборке распределены независимо.

Пример, когда это не так: признак — уровень гликогена в икроножной мышце крысы, фактор 1 — уровень стресса крыс, фактор 2 — различия между клетками. Крысы со стрессом живут в клетках 1 и 2, без стресса — 3 и 4.

Решение — иерархический дисперсионный анализ.

Codon bias index (CBI) — мера случайности использования синонимичных кодонов в геноме — была определена для нескольких регионов двух хромосом чернобрюхой дрозофилы. Требуется определить, есть ли систематические различия по величине СВІ между разными хромосомами и регионами.

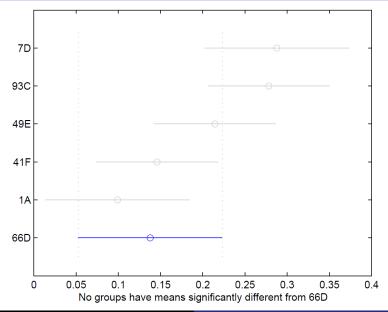
1-way w.s.

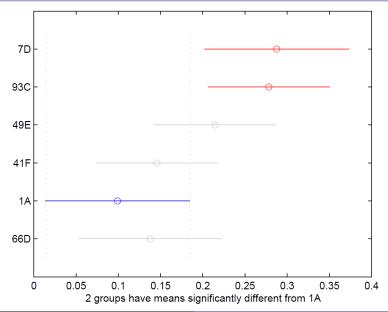
Source	SS	df	MS	F	Prob>F
Chromosome	0.00496	2	0.00248	0.32	0.7319
Region(Chromosome)	0.16295	3	0.05432	6.92	0.0011
Error	0.23564	30	0.00785		
Total	0.40891	35			

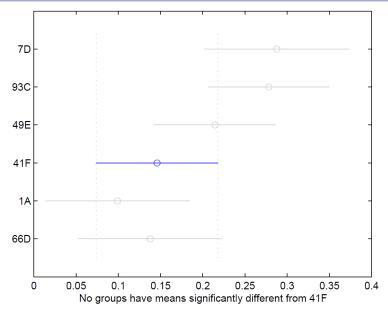
Есть различия между регионами, нет различий между хромосомами.

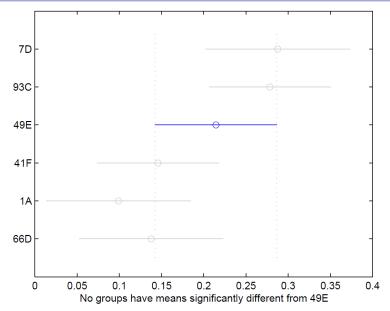
Для уточнения различий применим метод HSD:

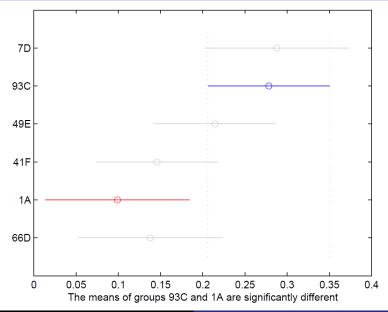
Группа 1	Группа 2	CI_L	mean	CI_U
7D	93C	-0.1485	0.0093	0.1672
7D	49E	-0.0847	0.0732	0.2310
7D	41F	-0.0161	0.1417	0.2996
7D	1A	0.0181	0.1886	0.3591
7D	66D	-0.0207	0.1498	0.3203
93C	49E	-0.0802	0.0639	0.2079
93C	41F	-0.0117	0.1324	0.2765
93C	1A	0.0214	0.1793	0.3371
93C	66D	-0.0174	0.1405	0.2983
49E	41F	-0.0755	0.0686	0.2127
49E	1A	-0.0424	0.1154	0.2733
49E	66D	-0.0812	0.0766	0.2345
41F	1A	-0.1110	0.0469	0.2047
41F	66D	-0.1498	0.0081	0.1659
1A	66D	-0.2093	-0.0388	0.1317



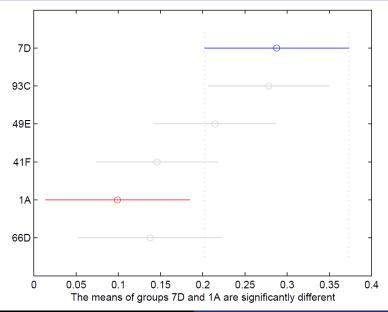








CBI чернобрюхой дрозофилы



Доза Лекарство	5 мг	10 мг
Препарат А		
Препарат В		

Плацебо, 0 мг

Используется однофакторный дисперсионный анализ с последующими запланированными сравнениями.

Лечение гипертонии

72 пациента проходили лечение от гипертонии. Для лечения использовались три вида лекарств, при этом их эффект изучался как при использовании специальной диеты, так и в её отсутствии; кроме того, в ряде случаев применялась психотерапия. Данные — артериальное давление пациента по окончании лечения. Требуется сравнить эффективность методов для лечения гипертонии.

Дизайн $[3 \times 2 \times 2]$.

Трёхфакторный дисперсионный анализ, все взаимодействия:

Source	SS	df	MS	F	$Prob{>}F$
Therapy	2048	1	2048	13.07	0.0006
Diet	5202	1	5202	33.2	0
Drug	3675	2	1837.5	11.73	0.0001
Therapy*Diet	32	1	32	0.2	0.6529
Therapy*Drug	259	2	129.5	0.83	0.4425
Diet*Drug	903	2	451.5	2.88	0.0638
Therapy*Diet*Drug	1075	2	537.5	3.43	0.0388
Error	9400	60	156.67		
Total	22594	71			

Воздействие одного из факторов различно при различных комбинациях двух других. Хотя эффект Therapy*Drug незначим в целом, значимость Therapy*Diet*Drug говорит о том, что влияние Therapy*Drug необходимо оценивать отдельно для пациентов, использующих и не использующих диету.

3-way b.s.

Однофакторный дисперсионный анализ для связанных выборок

бъект <i>f</i>	1	 k	 K
1	X_{11}	X_{k1}	X_{K1}
:		 	
n	X_{1n}	X_{kn}	X_{Kn}

Линейная модель:

1-way b.s.

$$X_{ki} = \mu + \alpha_k + \beta_i + \varepsilon_{ki},$$

$$i = 1, \dots, n, \ k = 1, \dots, K.$$

 μ — глобальное среднее значение признака X,

 α_k — отклонение от $\mu + \beta_i$, вызванное влиянием k-го уровня фактора f,

 β_i — отклонение от μ , вызванное влиянием особенностей i-го объекта,

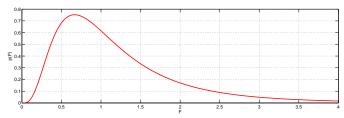
 ε_{ki} — случайные независимые одинаково распределённые ошибки.

Средние значения X во всех K выборках одинаковы $\Leftrightarrow \alpha_1 = \cdots = \alpha_K$.

Критерий Фишера

1-way b.s.

выборки:
$$X^N = X_1^{n_1} \bigcup \ldots \bigcup X_K^{n_K};$$
 нулевая гипотеза: $H_0: \alpha_1 = \alpha_2 = \ldots = \alpha_K;$ альтернатива: $H_1: H_0$ неверна; статистика: $F\left(X^N\right) = \frac{SS_{bg}/(K-1)}{\left(SS_{wg} - SS_s\right)/(n-1)(K-1)},$ $SS_{bg} = n \sum\limits_{k=1}^K \left(\bar{X}_k - \bar{X}\right)^2,$ $SS_{wg} = \sum\limits_{k=1}^K \sum\limits_{i=1}^n \left(X_{ki} - \bar{X}_k\right)^2,$ $SS_s = K \sum\limits_{i=1}^n \left(\bar{X}_i - \bar{X}\right)^2;$ $F\left(X^N\right) \sim F(K-1,(n-1)(K-1))$ при H_0 .



1-way b.s.

Предположения метода:

- 📵 выборочные распределения средних значений признака во всех группах нормальны;
- 2 для фактора с более чем двумя уровнями: попарные разности признака имеют одинаковую дисперсию для любых уровней фактора (сферичность);
- объекты независимы.

Предположение сферичности на практике нарушается наиболее часто, причём это может привести к росту вероятности ошибки первого рода. Проверить гипотезу сферичности можно с помощью критерия Маухли, если она отвергается, используются модификации числа степеней свободы критерия Фишера.

Критерий Фишера

Пример: исследовалось влияние метилфенидата на способность к отсрочке удовольствия умственно отсталыми детьми с синдромом дефицита внимания и гиперактивности. Каждый испытуемый принимал либо препарат в одной из трёх дозировок, либо плацебо, после чего проходил тест.

 H_0 : препарат не влияет на среднюю способность к отсрочке удовольствия.

 H_1 : препарат влияет на среднюю способность к отсрочке удовольствия $\Rightarrow p = 0.004.$

Критерий Фридмана

выборки:
$$X_{ki} = \mu + \alpha_k + \beta_i + \varepsilon_{ki}, i = 1, ..., n, k = 1, ..., K;$$

нулевая гипотеза:
$$H_0$$
: $\alpha_1 = \ldots = \alpha_K$;

альтернатива: $H_1: H_0$ неверна;

статистика:
$$S\left(X\right)=rac{12}{nK(K+1)}\sum\limits_{k=1}^{K}R_{k}^{2}-3n\left(K-1
ight),$$
 $R_{k}=\sum\limits_{k=1}^{n}r_{ki},$

$$r_{ki}$$
 — ранг k -го элемента в i -й строке;

C(Y) where the following property C(Y)

 $S\left(X
ight)$ имеет табличное распределение при $H_{0}.$

Распространённая аппроксимация для n>15, K>10:

$$S\left(X\right) \sim \chi_{K-1}^{2}.$$

Более точная аппроксимация:

$$\frac{(n-1)S(X)}{n(K-1)-S(X)} \sim F(n-1,(n-1)(K-1)).$$

Пример: исследуется 5 технологий вытачивания детали. Каждый из 15 рабочих в течение нескольких смен использовал каждую из технологий. X_{ki} — производительность i-го рабочего при использовании k-й технологии.

 H_0 : выбор технологии не меняет производительности рабочих. H_1 : выбор технологии влияет на производительность рабочих $\Rightarrow p = 0.356.$

1-way b.s.

выборки:
$$X_{ki} = \mu + \alpha_k + \beta_i + \varepsilon_{ki}, i = 1, ..., n, k = 1, ..., K;$$

3-way b.s.

нулевая гипотеза:
$$H_0: \alpha_1 = \ldots = \alpha_K;$$

альтернатива:
$$H_1: \alpha_1 \leq \ldots \leq \alpha_K;$$

статистика:
$$L(X) = \sum_{k=1}^{K} kR_k$$
,

$$R_k = \sum_{i=1}^n r_{ki},$$

 r_{ki} — ранг k-го элемента в i-й строке;

L(X) имеет табличное распределение при H_0 .

Аппроксимация для n > 15, K > 10:

$$L(X) \sim N\left(\frac{nK(K+1)^2}{4}, \frac{n(K^3-K)^2}{144(K-1)}\right).$$

Пример: на 20 полях тестируется 5 доз калийных удобрений. Каждое поле поделено на 5 участков, по одному на каждую дозу. Измерена прочность выращенного на каждом участке хлопка.

 H_0 : дозировка удобрений не влияет на прочность хлопка.

 H_1 : дозировка удобрений влияет на прочность хлопка $\Rightarrow p = 0.126$.

 H_1 : с ростом дозировки удобрений прочность хлопка увеличивается

 $\Rightarrow p = 0.046.$

1-way b.s.

- разновидности ANOVA Tabachnick, 3.2;
- применение в R Chang, http://www.cookbook-r.com/ Statistical_analysis/ANOVA/;
- проверка однородности дисперсии в R: http://www.cookbook-r.com/ Statistical_analysis/Homogeneity_of_variance/;
- критерий Mayxли (Mauchly's sphericity test), поправки при отсутствии сферичности (Huynh-Feldt, Greenhouse-Geisser, lower-bound) http://en.wikipedia.org/wiki/Mauchly's_sphericity_test;
- unbalanced two-way ANOVA Tabachnik, 6;
- критерии Краскела-Уоллиса (Kruskal–Wallis) и Джонкхиера (Jonckheere) — Кобзарь, 4.2.1.2.1, 4.2.1.2.9;
- критерии Фридмана (Friedman) и Пейджа (Page) Лагутин, гл. 17;
- непараметрический двухфакторных дисперсионный анализ Wilcox, 7.9;
- альтернативы w.s. ANOVA Davis.

Литература

1-way b.s.

Tabachnick B.G., Fidell L.S. Using Multivariate Statistics. — Boston: Pearson Education, 2012.

Лагутин М.Б. Наглядная математическая статистика. — Москва: Бином, 2007. Кобзарь А.И. Прикладная математическая статистика. — М.: Физматлит, 2006. Davis C.S. Statistical Methods for the Analysis of Repeated Measurements. — New York: Springer-Verlag, 2002.

Wilcox R.R. Introduction to Robust Estimation and Hypothesis Testing. — Academic Press, 2012.