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To start an applied project an expert and an analyst set

1. Project goal (the expected result of development)
main purpose of research

2. Project application (how the project result will be applied)
environment of measures and impacts

3. Historical data description (data formats and timing)
algebraic structures of data

4. Quality criteria (how the project quality is measured)
error function

5. Feasibility of the project (how to prove the project feasibility, list possible risks)
error analysis

How long the model lives after being put on operation? What replaces it after?
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Quality criteria for model generation and selection

Three sources of quality criteria

1. Business: model operation productivity, agent impact to environment
2. Theory: statistical hypothesis, bayesian inference
3. Technology: optimization requirements, resources

The main criteria of model quality

I Precision: MAPE, AUC
I Stability (diversity): std deviation for prediction, covariance of parameters
I Complexity: structure complexity, MDL, evidence of model
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Problem statement for machine learning

Formal problem statement, an analyst has to set

1) an algebraic structure for the dataset from measurements
2) a data generation hypothesis from 1)
3) a model, or a mixture from 2)
4) an error function (quality criteria with restrictions) from 2)
5) an optimization algorithm from 3) and 4)

The result of the model construction is a Cartesian product

{models× datasets× quality criteria}.

Def: Big data rejects the i.i.d. (independent and identically distributed random variables)
data generation hypothesis from 2). It requests a mixture model.
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Analyst creates a model for expert to put it to operation
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Model selection in forecasting

In terms of regression
ŷ = f(X,w) = Xw, a class of
linear models.

Classes of models to select from
are RBF, NN, SVM, CNN, etc.
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Binary representation of the model structure

Select a model f from a class F by optimizing binary vector a ∈ Bn,

ŷ = f (w, x) = a1w1x1 + · · ·+ anwnxn

for the linear model
f (w, x) = xTw

and for the neural network

f(w, x) =
exp
(
h(x)

)
∑

j exp(hj(x))
, h(x) = W

T

2 tanh(W
T

1 x), w = vec(W1
...W2),

according to the optimal brain damage method the structure vector

eT
i ∆w + wi = 0

with i-th element of e equals 1, the rest equal 0.
The model is defined by a vertex on the n-dimensional cube.
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Select a stable and precise model given set of features

The sample contains multicollinear χ1,χ2 and noisy χ5,χ6 features, columns of the
design matrix X. We want to select two features from six.

Stability and accuracy for a fixed complexity
The solution: χ3,χ4is an orthogonal set of features minimizing the error function.

Katrutsa, Strijov. 2015. Stress-test procedure for feature selection // Chemometrics 8 / 48



Model parameter values with regularization

Vector-function f = f(w,X) = [f (w, x1), . . . , f (w, xm)]T ∈ Ym.
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Minimize number of similar and maximize number of relevant features
The model is defined by a vertex point in the n-dimensional cube.

Introduce a feature selection method QP(Sim, Rel) to solve the optimization problem

a∗ = arg min
a∈Bn

a
T

Qa− b
T

a,

Number of correlated features Sim→ min, number of correlated to the target Rel→ max.
where matrix Q ∈ Rn×n of pairwise similarities of features χi and χj is

Q = [qij ] = Sim(χi ,χj) =
∣∣∣Cov(χi ,χj)÷

√
Var(χi )Var(χj)

∣∣∣

and vector b ∈ Rn of feature relevances to the target is

b = [bi ] = Rel(χi ),

elements bi are absolute values of the correlation between feature χi and the target y.
Katrutsa, Strijov. 2017. Comprehensive study of feature selection methods to solve

multicollinearity problem // Expert Systems with Applications
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WIMAGINE (clinatec.fr) 64-Channel ECoG implant and physical motion

Extracts (350–370s) from voltage and wrist position time series for
monkey A and 3D wrist trajectory for the same extract.

Motrenko, Strijov, 2018. Multi-way feature selection for ECoG-based BCI //Expert Systems with
Applications, sub.
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The wrist motion trajectory prediction with ECoG

Segment of the forecasted time series. Linear regression, 50 best features according to
multi-way QPFS (from 1000 highly-correlated features).
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Empirical distribution of model parameters

There given a sample {w1, . . . ,wK} of realizations of the m.r.v. w and an error
function S(w|D, f). Analyze the set {sk = exp

(
−S(wk |D, f)

)
|k = 1, . . . ,K}.
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Kuznetsov, Tokmakova, Strijov. 2016. Analytic methods of structure parameter // Informatica
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No one expected convergence for various priors...
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Bakhteev, Strijov. 2018. Variational evidence estimation // Automation Remote Control
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Forecasting quality does not change until almost all connections removed

Model stability
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Def: Deep neural network is a model of exceeding complexity. It ignores the universal
approximation theorem (George Cybenko 1989, Kurt Hornik 1991).
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Neural network optimal brain damage procedure
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Consequent model generation

Popova, Strijov. 2015. Selection of optimal physical activity classification model // Informatics
and Applications
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Let the universal model be a mixture of superpositions of primitives

The tree Γf corresponds to some superposition f ∈ F

f = sin(x) + (ln x)x

Construct a superposition f

1) primitive functions G 3 g : (w′, x′)7→x′′,
2) generation rules Gen and simplification rules Rem,
3) an admissible superposition is cod(gk+1) ⊆ dom(gk), for any k .

A model is the superposition f (w, x) = (g1 ◦ · · · ◦ gK )(w)(x).

Construct a tree Γf

1) the root ∗ of the tree Γf has the single vertex,
2) other vertices Vi correspond to the functions gr ∈ G: Vi 7→ gr ,
3) the leaves Γf correspond to elements of the vector x.
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Consequent model generation

Add-delete strategy modifies a model to select it from a class, it searches
around the maximum model evidence.
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Genetic optimization constructs symbolic regression model structure

To create a model as a superposition of primitive functions

1) exchange random sub-trees between two models,
2) replace a random primitive for another one,
3) select the best models and repeat.
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Simple superposition has 14 parameters versus 2-NN has 64 parameters
Approximate the pressure in the combusting camera of a diesel engine
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TREC text document collection has 2M documents times 200K requests

The information retrieval rank models with quality of Mean Average Precision = 14.03
for TREC-8 by the USA National Institute of Standards and Technology.

Kulunchakov, Strijov. 2017. Generation of simple structured Information Retrieval functions by
genetic algorithm without stagnation // Expert Systems with Applications
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One model to forecast models
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Link matrix Zf estimation limitations

f = sin(x) + (ln x)x

The link matrix Zf for the tree Γf

sum times ln sin x

∗ 1 0 0 0 0
sum 0 1 1 0 0
times 0 0 0 1 1

ln 0 0 0 0 1
sin 0 0 0 0 1

The link probability matrix Pf for the tree Γf

sum times ln sin x

∗ 0.7 0.1 0.1 0.1 0.2
sum 0.2 0.7 0.8 0.1 0.2
times 0.1 0.3 0 0.8 0.8

ln 0.2 0.1 0.3 0.1 0.9
sin 0.1 0.2 0.1 0 0.8

Z is a set of matrices corresponding to the superpositions from F.
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Structure learning problem

There is given a sample D = {(Dk , fk)} where the element Dk = ( X
m×n

, y
m×1

), there

given G and F = {fs | fs : (ŵk ,X) 7→ y, s ∈ N}.
The goal
to find an algorithm a : Dk 7→ fs following the condition

Zfs = arg max
Z∈Z

∑

i ,j

Pij × Zi ,j .

The index ŝ, что fŝ provides a minimum for the error function S :

ŝ = arg min
s∈{1,...,|F|}

S(fs | ŵk ,Dk),

where ŵk is an optimal vector of parameters fs for each fs ∈ F with the fixed Dk :

ŵk = arg min
w∈Ws

S(w | fs ,Dk).
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Complex action: workers construct a rack (Forecsys.ru, behavioral analysis)
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Complex movement: the worker is drilling while standing
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Time series samples for physical activity monitoring
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Time series samples for physical activity monitoring
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The initial and the forecasted superposition
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Human gait detection with time series segmentation

Find dissection of the trajectory of principal components yj = Hvj , where H is the
Hankel matrix and vj are its eigenvectors:

1

N
H

T
H = VΛV

T
, Λ = diag(λ1, . . . , λN).

Motrenko, Strijov. 2016. Extracting fundamental periods to segment human motion time series //
IEEE Journal of Biomedical and Health Informatics
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Replace universal models for interpretable superposition: NN → SSA+LgR

Neural network replaced by Singular Structure Analysis + Linear regression
boosts quality and puts the model into a wristwatch.

Performance of the human physical activities classification
Ignatov, Strijov. 2015. Human activity recognition // Multimedia Tools and Applications

32 / 48



Discover the iris by linear mixture (possible example)

Replace a proprietary algorithm or CNN for mixture of linear models
to drop the computational complexity.

Example of interpretable modelling

Chigrinsky. 2017. Modeling of the iris movement by optical flow//BS Thesis, adv. by Matveev
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Put interpretable models to operation along with privilege learning models
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List of the model generation paradigms

1. Binary/continuous/graph optimization of model structures
2. Neural networks forecast hyperparameters of neural networks (ref. NIPS 2017)
3. Networks forecast superpositions
4. Interpretable models replace neural network blocks
5. Company models boost quality of neighbor models by privilege learning
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Our research challenges

1. Lay the foundations for the forecasting of model structures
2. Develop the theory of local modeling for signals of wearable devices
3. Deploy standards to exchange local and universal models

30+ projects start 14.2.18. with 60 analysts, experts and MIPT students:
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