Линейные методы классификации: метод опорных векторов

K.B.Воронцов vokov@forecsys.ru

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

Видеолекции: http://shad.yandex.ru/lectures

март 2014

Содержание

- 1 Метод опорных векторов SVM
 - Принцип оптимальной разделяющей гиперплоскости
 - Двойственная задача
 - Понятие опорного вектора
- Обобщения линейного SVM
 - Ядра и спрямляющие пространства
 - Нейронные сети и SVM
 - Обзор регуляризаторов для SVM
- Валансировка ошибок и ROC-кривая
 - Определение ROC-кривой
 - Эффективное построение ROC-кривой
 - Градиентная максимизация AUC

Задача SVM — Support Vector Machine

Задача классификации: $X=\mathbb{R}^n,\ Y=\{-1,+1\},$ по обучающей выборке $X^\ell=(x_i,y_i)_{i=1}^\ell$ найти параметры $w\in\mathbb{R}^n,\ w_0\in\mathbb{R}$ алгоритма классификации

$$a(x, w) = sign(\langle x, w \rangle - w_0).$$

Метод минимизации аппроксимированного регуляризованного эмпирического риска:

$$\sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 \rightarrow \min_{w, w_0}.$$

где $M_i(w, w_0) = y_i(\langle x_i, w \rangle - w_0) - \sigma \tau \tau y \pi$ (margin) объекта x_i .

Почему именно такая функция потерь? и такой регуляризатор?

Оптимальная разделяющая гиперплоскость

Линейный классификатор:

$$a(x, w) = sign(\langle w, x \rangle - w_0), \quad w, x \in \mathbb{R}^n, \ w_0 \in \mathbb{R}.$$

Пусть выборка $X^{\ell} = (x_i, y_i)_{i=1}^{\ell}$ линейно разделима:

$$\exists w, w_0 : M_i(w, w_0) = y_i(\langle w, x_i \rangle - w_0) > 0, \quad i = 1, ..., \ell$$

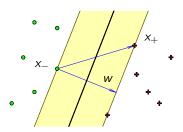
Нормировка: $\min_{i=1,...,\ell} M_i(w, w_0) = 1.$

Разделяющая полоса:

$$\{x: -1 \leqslant \langle w, x \rangle - w_0 \leqslant 1\}.$$

Ширина полосы:

$$\frac{\langle x_+ - x_-, w \rangle}{\|w\|} = \frac{2}{\|w\|} \to \max.$$



Обоснование кусочно-линейной функции потерь

Линейно разделимая выборка

$$\begin{cases} \|w\|^2 \to \min_{w,w_0}; \\ M_i(w,w_0) \geqslant 1, \quad i = 1,\ldots,\ell. \end{cases}$$

Переход к линейно неразделимой выборке (эвристика)

$$\begin{cases} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{\ell} \xi_i \to \min_{w, w_0, \xi}; \\ M_i(w, w_0) \geqslant 1 - \xi_i, & i = 1, \dots, \ell; \\ \xi_i \geqslant 0, & i = 1, \dots, \ell. \end{cases}$$

Эквивалентная задача безусловной минимизации:

$$C\sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2} ||w||^2 \rightarrow \min_{w, w_0}.$$

Напоминание. Условия Каруша-Куна-Таккера

Задача математического программирования:

$$\begin{cases} f(x) \to \min_{x}; \\ g_{i}(x) \leqslant 0, \quad i = 1, \dots, m; \\ h_{j}(x) = 0, \quad j = 1, \dots, k. \end{cases}$$

Необходимые условия. Если x — точка локального минимума, то существуют множители μ_i , $i=1,\ldots,m,\ \lambda_j$, $j=1,\ldots,k$:

$$\begin{cases} \frac{\partial \mathscr{L}}{\partial x} = 0, & \mathscr{L}(x; \mu, \lambda) = f(x) + \sum_{i=1}^m \mu_i g_i(x) + \sum_{j=1}^k \lambda_j g_j(x); \\ g_i(x) \leqslant 0; & h_j(x) = 0; \text{ (исходные ограничения)} \\ \mu_i \geqslant 0; & \text{(двойственные ограничения)} \\ \mu_i g_i(x) = 0; & \text{(условие дополняющей нежёсткости)} \end{cases}$$

Функция Лагранжа: $\mathscr{L}(w, w_0, \xi; \lambda, \eta) =$

$$= \frac{1}{2} \|w\|^2 - \sum_{i=1}^{\ell} \lambda_i \big(M_i(w, w_0) - 1 \big) - \sum_{i=1}^{\ell} \xi_i \big(\lambda_i + \eta_i - C \big),$$

 λ_i — переменные, двойственные к ограничениям $M_i\geqslant 1-\xi_i$; η_i — переменные, двойственные к ограничениям $\xi_i\geqslant 0$.

$$\begin{cases} \frac{\partial \mathscr{L}}{\partial w} = 0, & \frac{\partial \mathscr{L}}{\partial w_0} = 0, & \frac{\partial \mathscr{L}}{\partial \xi} = 0; \\ \xi_i \geqslant 0, & \lambda_i \geqslant 0, & \eta_i \geqslant 0, & i = 1, \dots, \ell; \\ \lambda_i = 0 & \text{либо} & M_i(w, w_0) = 1 - \xi_i, & i = 1, \dots, \ell; \\ \eta_i = 0 & \text{либо} & \xi_i = 0, & i = 1, \dots, \ell; \end{cases}$$

Необходимые условия седловой точки функции Лагранжа

Функция Лагранжа: $\mathscr{L}(w, w_0, \xi; \lambda, \eta) =$

$$= \frac{1}{2} ||w||^2 - \sum_{i=1}^{\ell} \lambda_i (M_i(w, w_0) - 1) - \sum_{i=1}^{\ell} \xi_i (\lambda_i + \eta_i - C),$$

Необходимые условия седловой точки функции Лагранжа:

$$\frac{\partial \mathcal{L}}{\partial w} = w - \sum_{i=1}^{\ell} \lambda_i y_i x_i = 0 \implies w = \sum_{i=1}^{\ell} \lambda_i y_i x_i;$$

$$\frac{\partial \mathcal{L}}{\partial w_0} = -\sum_{i=1}^{\ell} \lambda_i y_i = 0 \implies \sum_{i=1}^{\ell} \lambda_i y_i = 0;$$

$$\frac{\partial \mathcal{L}}{\partial \varepsilon_i} = -\lambda_i - \eta_i + C = 0 \implies \eta_i + \lambda_i = C, \quad i = 1, \dots, \ell.$$

Понятие опорного вектора

Типизация объектов:

- 1. $\lambda_i = 0$; $\eta_i = C$; $\xi_i = 0$; $M_i \geqslant 1$.
 периферийные (неинформативные) объекты.
- 2. $0 < \lambda_i < C$; $0 < \eta_i < C$; $\xi_i = 0$; $M_i = 1$. опорные граничные объекты.
- 3. $\lambda_i = C$; $\eta_i = 0$; $\xi_i > 0$; $M_i < 1$. опорные-нарушители.

Определение

Объект x_i называется опорным, если $\lambda_i \neq 0$.

Двойственная задача

$$\begin{cases}
-\mathcal{L}(\lambda) = -\sum_{i=1}^{\ell} \lambda_i + \frac{1}{2} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \lambda_i \lambda_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle & \to & \min; \\
0 \leqslant \lambda_i \leqslant C, \quad i = 1, \dots, \ell; \\
\sum_{i=1}^{\ell} \lambda_i y_i = 0.
\end{cases}$$

Решение прямой задачи выражается через решение двойственной:

$$egin{cases} w = \sum\limits_{i=1}^\ell \lambda_i y_i x_i; \ w_0 = \langle w, x_i
angle - y_i, \quad$$
 для любого i : $\lambda_i > 0$, $M_i = 1$.

Линейный классификатор:

$$a(x) = \operatorname{sign}\left(\sum_{i=1}^{\ell} \lambda_i y_i \langle x_i, x \rangle - w_0\right).$$

Нелинейное обобщение SVM

Переход к спрямляющему пространству более высокой размерности: $\psi \colon X \to H$.

Определение

Функция $K: X \times X \to \mathbb{R}$ — ядро, если $K(x,x') = \langle \psi(x), \psi(x') \rangle$ при некотором $\psi: X \to H$, где H — гильбертово пространство.

Теорема

Функция K(x,x') является ядром тогда и только тогда, когда она симметрична: K(x,x')=K(x',x);

и неотрицательно определена:

$$\int_X \int_X K(x,x')g(x)g(x')dxdx'\geqslant 0$$
 для любой $g\colon X o \mathbb{R}.$

Конструктивные методы синтеза ядер

- ② константа K(x, x') = 1 ядро;
- ullet произведение ядер $K(x,x') = K_1(x,x')K_2(x,x')$ ядро;
- ullet $\forall \psi: X
 ightarrow \mathbb{R}$ произведение $K(x,x') = \psi(x)\psi(x')$ ядро;

- $m{\circ}$ если $s\colon X imes X o \mathbb{R}$ симметричная интегрируемая функция, то $K(x,x')=\int_X s(x,z)s(x',z)\,dz$ ядро;
- если K_0 ядро и функция $f: \mathbb{R} \to \mathbb{R}$ представима в виде сходящегося степенного ряда с неотрицательными коэффициентами, то $K(x,x')=f(K_0(x,x'))$ ядро;

Пример: спрямляющее пространство для квадратичного ядра

Пусть
$$X=\mathbb{R}^2$$
, $K(u,v)=\langle u,v \rangle^2$, где $u=(u_1,u_2)$, $v=(v_1,v_2)$.

Задача: найти пространство H и преобразование $\psi\colon X\to H$, при которых $K(x,x')=\langle \psi(x),\psi(x')\rangle_H.$

Разложим квадрат скалярного произведения:

$$K(u,v) = \langle u,v \rangle^2 = \langle (u_1, u_2), (v_1, v_2) \rangle^2 =$$

$$= (u_1v_1 + u_2v_2)^2 = u_1^2v_1^2 + u_2^2v_2^2 + 2u_1v_1u_2v_2 =$$

$$= \langle (u_1^2, u_2^2, \sqrt{2}u_1u_2), (v_1^2, v_2^2, \sqrt{2}v_1v_2) \rangle.$$

Таким образом,

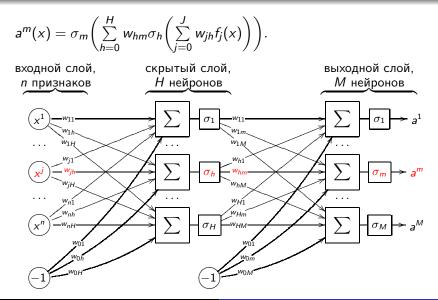
$$H = \mathbb{R}^3, \quad \psi \colon (u_1, u_2) \mapsto (u_1^2, u_2^2, \sqrt{2}u_1u_2),$$

Линейной поверхности в пространстве H соответствует квадратичная поверхность в исходном пространстве X.

Примеры ядер

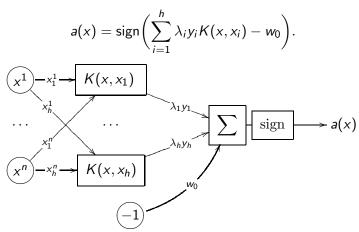
- $K(x,x') = \langle x,x' \rangle^2$ квадратичное ядро;
- **②** $K(x,x') = \langle x,x' \rangle^d$ полиномиальное ядро с мономами степени d;
- $(x,x') = (\langle x,x'\rangle + 1)^d$
 - полиномиальное ядро с мономами степени $\leqslant d$;
- $(x, x') = \sigma(\langle x, x' \rangle)$
 - нейросеть с заданной функцией активации $\sigma(z)$ (не при всех σ является ядром);
- $K(x,x') = \operatorname{th}(k_0 + k_1 \langle x, x' \rangle), \ k_0, k_1 \geqslant 0$ нейросеть с сигмоидными функциями активации;
- **1** $K(x, x') = \exp(-\beta ||x x'||^2)$ сеть радиальных базисных функций;

Двухслойная нейронная сеть



SVM как двухслойная нейронная сеть

Перенумеруем объекты так, чтобы x_1,\ldots,x_h были опорными.



Преимущества и недостатки SVM

Преимущества SVM перед SG и нейронными сетями:

- Задача выпуклого квадратичного программирования имеет единственное решение.
- Число нейронов скрытого слоя определяется автоматически — это число опорных векторов.

Недостатки классического SVM:

- Неустойчивость к шуму.
- ullet Нет общих подходов к оптимизации K(x,x') под задачу.
- Приходится подбирать константу С.
- Нет отбора признаков.

Метод релевантных векторов RVM (Relevance Vector Machine)

Положим, как и в SVM, при некоторых $\lambda_i\geqslant 0$

$$w = \sum_{i=1}^{\ell} \lambda_i y_i x_i,$$

причём опорным векторам x_i соответствуют $\lambda_i \neq 0$.

Проблема: Какие из коэффициентов λ_i лучше обнулить?

Идея: пусть регуляризатор зависит не от w, а от λ_i .

Пусть λ_i независимые, гауссовские, с дисперсиями $lpha_i$:

$$p(\lambda) = \frac{1}{(2\pi)^{\ell/2} \sqrt{\alpha_1 \cdots \alpha_\ell}} \exp\left(-\sum_{i=1}^{\ell} \frac{\lambda_i^2}{2\alpha_i}\right);$$

$$\sum_{i=1}^{\ell} \left(1 - M_i(w(\lambda), w_0)\right)_+ + \frac{1}{2} \sum_{i=1}^{\ell} \left(\ln \alpha_i + \frac{\lambda_i^2}{\alpha_i}\right) \to \min_{\lambda, \alpha}.$$

Преимущества и недостатки RVM

Преимущества:

- Опорных векторов, как правило, меньше (более «разреженное» решение).
- ⊕ Шумовые выбросы уже не входят в число опорных.
- \oplus Не надо искать параметр регуляризации (вместо этого α_i оптимизируются в процессе обучения).
- Аналогично SVM, можно использовать ядра.

Недостатки:

 ⊖ Авторам не удалось показать практическое преимущество по качеству классификации.

1-norm SVM (LASSO SVM)

$$\sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \mu \sum_{j=1}^{n} |w_j| \rightarrow \min_{w, w_0}.$$

- \oplus Отбор признаков с параметром *селективности* μ : чем больше μ , тем меньше признаков останется
- ⊖ LASSO начинает отбрасывать значимые признаки, когда ещё не все шумовые отброшены
- \ominus Нет эффекта группировки (grouping effect): значимые зависимые признаки должны отбираться вместе и иметь примерно равные веса w_i

Bradley P., Mangasarian O. Feature selection via concave minimization and support vector machines // ICML 1998.

Doubly Regularized SVM (Elastic Net SVM)

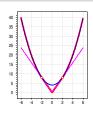
$$C\sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \mu \sum_{j=1}^{n} |w_j| + \frac{1}{2} \sum_{j=1}^{n} w_j^2 \rightarrow \min_{w, w_0}.$$

- \oplus Отбор признаков с параметром селективности μ : чем больше μ , тем меньше признаков останется
- Есть эффект группировки
- ⊖ Шумовые признаки также группируются вместе, и группы значимых признаков могут отбрасываться, когда ещё не все шумовые отброшены

Li Wang, Ji Zhu, Hui Zou. The doubly regularized support vector machine // Statistica Sinica, 2006. Nº 16, Pp. 589–615.

Support Features Machine (SFM)

$$C \sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \sum_{j=1}^{n} R_{\mu}(w_j) \rightarrow \min_{w, w_0}.$$
 $R_{\mu}(w_j) = \begin{cases} 2\mu |w_j|, & |w_j| \leq \mu; \\ \mu^2 + w_i^2, & |w_j| \geq \mu; \end{cases}$



- \oplus Отбор признаков с параметром *селективности* μ
- Есть эффект группировки
- \oplus Значимые зависимые признаки ($|w_j| > \mu$) группируются и входят в решение совместно (как в Elastic Net),
- \oplus Шумовые признаки ($|w_j| < \mu$) подавляются независимо (как в LASSO)

Tatarchuk A., Urlov E., Mottl V., Windridge D. A support kernel machine for supervised selective combining of diverse pattern-recognition modalities // Multiple Classifier Systems. LNCS, Springer-Verlag, 2010. Pp. 165–174.

Relevance Features Machine (RFM)

$$C \sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \sum_{j=1}^{n} \ln(w_j^2 + \frac{1}{\mu}) \rightarrow \min_{w, w_0}.$$

- \oplus Отбор признаков с параметром *селективности* μ : чем больше μ , тем меньше признаков останется
- Есть эффект группировки
- Лучше отбирает набор значимых признаков, когда они только совместно обеспечивают хорошее решение

Tatarchuk A., Mottl V., Eliseyev A., Windridge D. Selectivity supervision in combining pattern recognition modalities by feature- and kernel-selective Support Vector Machines // 19th International Conference on Pattern Recognition, Vol 1-6, 2008, Pp. 2336–2339.

Балансировка ошибок I и II рода

Задача классификации на два класса, $Y=\{-1,+1\};$ Модель классификации: $a(x,w,w_0)=\mathrm{sign}\big(f(x,w)-w_0\big).$

 $a(x_i,w)=-1$, $y_i=+1$ — ложно-отрицательная классификация («пропуск цели», ошибка I рода)

 $a(x_i, w) = +1$, $y_i = -1$ — ложно-положительная классификация («ложная тревога», ошибка II рода)

На практике цена ошибок I и II рода может быть неизвестна или многократно пересматриваться.

Постановка задачи

- Выбирать w_0 без обучения w заново.
- Ввести характеристику качества классификатора, инвариантную относительно выбора цены ошибок.

Определение ROC-кривой

ROC — «receiver operating characteristic».

- Каждая точка кривой соответствует некоторому $a(x; w, w_0)$.
- по оси X: доля ложно-положительных классификаций (FPR false positive rate):

$$\mathsf{FPR}(a, X^{\ell}) = \frac{\sum_{i=1}^{\ell} [y_i = -1] [a(x_i; w, w_0) = +1]}{\sum_{i=1}^{\ell} [y_i = -1]};$$

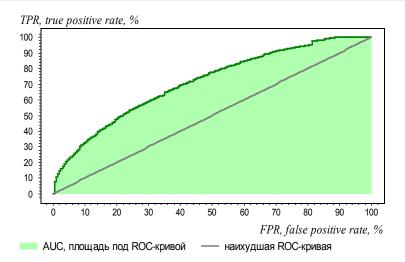
 $1 - \mathsf{FPR}(a)$ называется специфичностью алгоритма a.

• по оси Y: доля верно-положительных классификаций (TPR — true positive rate):

$$\mathsf{TPR}(a, X^{\ell}) = \frac{\sum_{i=1}^{\ell} [y_i = +1] [a(x_i; w, w_0) = +1]}{\sum_{i=1}^{\ell} [y_i = +1]};$$

 $\mathsf{TPR}(a)$ называется также чувствительностью алгоритма a.

Пример ROC-кривой



Алгоритм эффективного построения ROC-кривой

```
Вход: выборка X^{\ell}; дискриминантная функция f(x,w); Выход: \left\{(\mathsf{FPR}_i,\mathsf{TPR}_i)\right\}_{i=0}^{\ell}, AUC — площадь под ROC-кривой.
```

```
1: \ell_{V} := \sum_{i=1}^{\ell} [y_{i} = y], для всех y \in Y;
2: упорядочить выборку X^{\ell} по убыванию значений f(x_i, w);
3: поставить первую точку в начало координат:
   (FPR_0, TPR_0) := (0,0); AUC := 0;
4: для i := 1, \ldots, \ell
5:
      если y_i = -1 то сместиться на один шаг вправо:
        FPR_i := FPR_{i-1} + \frac{1}{\ell}; TPR_i := TPR_{i-1};
6:
        AUC := AUC + \frac{1}{\ell}TPR_i;
7:
      иначе сместиться на один шаг вверх:
        FPR_i := FPR_{i-1}; TPR_i := TPR_{i-1} + \frac{1}{\ell};
8:
```

Градиентная максимизация AUC

Модель:
$$a(x_i, w, w_0) = \text{sign}(f(x_i, w) - w_0).$$

 AUC — это доля правильно упорядоченных пар (x_i, x_j) :

$$\begin{aligned} \mathsf{AUC} &= \frac{1}{\ell_{-}} \sum_{i=1}^{\ell} \big[y_i = -1 \big] \mathsf{TPR}_i = \\ &= \frac{1}{\ell_{-}\ell_{+}} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \big[y_i < y_j \big] \big[f(x_i, w) < f(x_j, w) \big] \to \max_{w}. \end{aligned}$$

Явная максимизация аппроксимированного AUC:

$$Q(w) = \sum_{i,j: y_i < y_j} \mathscr{L}(\underbrace{f(x_j, w) - f(x_i, w)}_{M_{ij}(w)}) \to \min_{w},$$

где $\mathcal{L}(M)$ — убывающая функция отступа, $M_{ii}(w)$ — новое понятие отступа для пар объектов.

Резюме по линейным классификаторам

- Методы обучения линейных классификаторов отличаются
 - видом функции потерь;
 - видом регуляризатора;
 - численным методом оптимизации.
- Аппроксимация пороговой функции потерь гладкой убывающей функцией отступа $\mathscr{L}(M)$ повышает качество классификации (за счёт увеличения зазора) и облегчает оптимизацию.
- Регуляризация решает проблему мультиколлинеарности и также снижает переобучение.
- SVM один из лучших методов машинного обучения, изящно обобщается для нелинейной классификации
- AUC инвариантна относительно выбора цены ошибок.