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Preliminary data processing for recognition problems in which the values of one of the indices
are separable functions of two variables, given on a rectangular mesh, is considered. Algorithms
by means of which structural descriptions of these functions, satisfying uniqueness and stability
conditions with respect to errors of the initial data, can be found are constructed.

Modern methods of recognition and classification [1, 2] enable arbitrary sets of admissible values of the
indices to be used, including those assigned by a generalized inductive definition. In order to assign a
set in that way, it is necessary to indicate initial (underived) elements of that set together with a set of
operations by means of which new elements can be generated. In that case, it is convenient to represent
admissible values of an index in the form of structural descriptions which consist of descriptions of the
individual underived elements and of the order in which the operations on them are performed. As a rule
this approach, which is based on the explicit representation of structural information, enables an efficient
calculation of proximity estimates to be carried out and allows economic use of the memory for storing
the values of the indices. In practice, however, there is a different way of assigning values, and
preliminary processing must be undertaken before structural descriptions can be obtained.

In this paper we consider the special case where the set of underived values of an index is a special
family of functions of two variables, and the set of operations consists of addition only. The admissible
index values and the functions of two variables at the nodes of a rectangular grid are assigned, with
errors. The preliminary processing problem is to obtain a structural description of the assigned grid
function.

The natural condition imposed on the required description that it shall exist and be unique imposes
certain restrictions on the set of underived elements. In particular, it is possible to guarantee uniqueness
by making use of additional information to narrow down the original family of functions. There is an
equally natural requirement that the description should be stable with respect to errors of the initial data.
In any given case small errors should not cause a change in the number of underived elements in the
description.

1. CONSTRUCTING THE INITIAL SET OF DESCRIPTIONS

By an underived surface we will mean any function of two variables of the form f(x) g (), where
S(x) and g(y) are arbitrary functions defined on sets 3, CR and , C R, respectively, and by an
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admissible surface, any function of two variables which can be represented as the sum of a finite number
of underived surfaces.
Consider the following problem. Suppose that the admissible surface

2(x) =2/ (x)&0) (1.1)

is assigned with errors at the nodes of the rectangular grid (¢, m,), §,€Q,,m,€Q,,i=1,2,.. ,n,
j=1,2,..., m, and, to fix our ideas, let n =< m. The number of underived surfaces k is unknown. It is
required to find a structural description of the admissible surface or in this case, to determine k and find
the values of the functions f; (x), g. (») at grid nodes.

Let M, denote the space of real n X m matrices. We introduce the matrices

X=U(EBIEM, Y=IgMm)IEM, Z=[En)IeEM,.
Writing relation (1.1) at grid nodes, we obtain the matrix equation
Xy =2z (1.2)
with respect to the unknown matrices X and Y with an unknown number of columns k. We determine &

from the condition that the unknown reduction of form (1.1} shall consist of the minimum number of
terms.

Definition 1. The matrix Z € M, is said to be k-reducible if & is the least number for which there
are matrices X € M, and Y € M,,, satisfying the equation XYY" = Z. The ordered pair of matrices (X,
Y) is called the k-reduction of Z.

We will denote the set of all k-reductions of Z by M¥%.

Lemma 1. The matrix Z € M,

' 18 k-reducible if, and only if, its rank is equal to k. Any k-reduction
consists of matrices of full rank.

Proof. Sufficiency. Let the rank of the matrix Z be &. Then it cannot be g-reducible for ¢ < k. On the
other hand, Z can be represented in the form of the product of {(n X k)- and (k X m)-matrices (skeleton
reduction [3]), where the columns of the first can be taken as & linearly independent columns of Z. The
matrix Z is k-reducible.

Necessity. Let (X, Y) be any k-reduction of Z. The rank of the matrices X, Y and Z obviously cannot
be greater than k. It also cannot be less than £, since otherwise, as we have proved, the matrix Z would
be g-reducible for g < k. This proves the lemma.

Let (X, Y) be any k-reduction of Z. Then the matrices XX and Y'Y are non-degenerate and (1.2) is
equivalent to each of the equations

Y=2'X(X'X)", X=ZY(Y'V) . (1.3)

Lemma 2. Let (X, Y) be any k-reduction of the matrix Z. Then the set of all its k-reductions has the
form

M = {(XA, YA™"): A€ M,,, rang A = k}.

Proof. Obviously, any pair of matrices of the given form is a k-reduction of Z. The converse is also
true: for any k-reduction (U, V) there is a non-degenerate (k X k)-matrix 4 such that U= X4, V=
YA™'". For, using (1.3), it is easy to check that these equations are true by putting 4 = Y"V/(¥"V)"". Also,
A is non-degenerate, as is seen from the upper and lower bounds of the ranks: &= rank U = rank
XA = rank 4 < k. Thus, the set of this form and the set of all k-reductions of the matrix Z are identical.
This proves the lemma.

The following theorem is a direct consequence of Lemmas 1 and 2.

Theorem 1. If the rank of the matrix Z is equal to &, the matrix is k-reducible and
M. = {(XA, YA™"). A€ M,, rang A = k},

where the matrix X is made up of £ linearly independent columns of Z and the matrix Y is defined by the
formula Y= Z"X(X"X)"".
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Thus, with the given definition of an underived surface, for any admissible surface infinitely many different
structural descriptions can be indicated. To ensure that the description is unique, additional restrictions
must be placed on the set of underived surfaces. This problem will be considered in Section 3.

2. CALCULATING k£-REDUCTIONS

According to Lemma 2, the set of all k-reductions is uniquely defined by any one element of the set.
The computation of an arbitrary k-reduction of a given matrix is therefore of practical interest. Theorem
1 is not suitable for this purpose, because if the elements of the matrix Z are given with errors, its rank
might not be equal to the number of underived surfaces k. A possible way out is to find an approximate
solution of the matrix equation (1.2) and determine £ from the condition for (1.2) to be satisfied
sufficiently accurately (within the errors of Z).

In M,,, we will introduce the Euclidean norm

AN = (2 3 a )", where 4 = la,),.,.

=1 j=I

Definition 2. The matrix Z is called k, 8-reducible if k is the smallest number for which there is a
k-reducible matrix W such that ||Z — W|| =< 8. The matrix pair (X, Y) is called a &, 8-reduction of Z if it
is a k-reduction of W.

Consider the symmetric non-negative definite matrix ZZ". All its eigenvalues are concentrated on the
segment of the real axis [0, || Z||*], and the corresponding eigenvectors can be chosen so that they form
a complete orthonormalized system of vectors in R”. We now prove the following theorem, which is
related to the results of [4] concerning singular reduction of matrices.

Theorem 2. Suppose a matrix z € M, and real number 8 = 0 are given. Let A, = . .. = \,, be all the
eigenvalues of the matrix ZZ7. If k is the smallest number for which the condition

A+ A= NZIE— &, (2.1)

is satisfied, the matrix Z is k, 8-reducible, the best set of &, 8-reductions of Z in the sense of the Euclidean
norm having the form

{(XA, ZXA™'"y: A € M,,, rang A = k},

where the n X k-matrix X is made up of orthonormalized eigenvectors of ZZ", corresponding to the k
largest eigenvalues.

Proof. We will define a functional J,: M,, X M, — R by the formula
J, (U, V)= 11Z - UVIP,

assuming that rank U = rank ' = ¢, and we will find a matrix pair (U, V) for which J, is a global
minimum. Differentiating J, with respect to U and ¥, we obtain a system of normal equations for the
given least-squares problem (the necessary conditions for a minimumy):

U@EZ-uvy=0, (Z-UV)v=0. (2.2)

We will show that the matrix R = V'VU"U is diagonalizable. Since the matrix U"U is symmetric and
positive definite, there is a non-degenerate matrix S € M,, such that S™"U"US™' = E. Then, since the
matrix SV'VS" is symmetric and non-degenerate, there is an orthogonal matrix 7€ M, such that
T(SV'VS)T™' = A, where A = diag (d,, . . ., d,) is a diagonal matrix. Let 4 = TS. Then it is easily
verified that ARA™" = A, so that by a similarity transformation with non-degenerate transforming matrix
A4, R is reduced to diagonal form.

In system (2.2) we make the non-degenerate replacement of variables

U=XA, V=YA" (2.3)
Then the columns of the new matrices X and Y will be orthogonal:
XX=E YVY=A,

CMMP 35-10-6
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and system (2.2) becomes the equivalent system
Y=2Z'X, ZZ'X = XA.

The second of these equations means that d, . . ., d, are eigenvalues, and the columns of the matrix
X are the corresponding eigenvectors of ZZ".

A sufficient, not merely necessary, condition for a minimum can be obtained by computing the value
of the functional J7; for U and ¥ that satisfies (2.2). Since J, (U, V) =J, (X, ), we have

J*=w(Z - XYY (Z—XY)=1rZZ" —tr A= IZIF - (d, + ... +d).

The global minimum of the functional J, (U, V) will be reached if, and only if, d,, . . ., d, are the g largest
eigenvalues of the matrix ZZ". Also, if ¢ = £, then by condition (2.1),

NZ ~UV'iIRE=JF=UZIP—-A~...—} <O
Butif ¢ <k, forany UE M,, and V E M,,,
NZ—-—UVIR=Tr=IZIF—N—...=}>0

Thus, the matrix Z turns out to be k, 8-reducible, and the £, 8-reductions (U, V) minimize J, (U, V)
if, and only if, they are related by transformation (2.3) with the pair (X, Z'.X), in which the matrix X is
made up of orthonormalized eigenvectors ZZ", corresponding to the k largest eigenvalues. This proves
the theorem.

According to Theorem 2 a k, 3-reduction of Z can be found if 3 is given and the set of eigenvalues
and vectors of the matrix ZZ" is known. However, the computer time needed to find the spectrum
increases rapidly with the dimensions of the matrix Z. It is therefore advisable to examine algorithms
which do not require the eigenvalue problem to be solved explicitly.

We will investigate the possibility of calculating %, 8-reductions with the help of an iterative process
based on relations (1.3).

We will use the following notation. Let X € M,, be a matrix of rank &. We will denote the linear
envelope of the columns of X by £ (X). The projection matrix Py =E — X (X'X) " 'X", regarded as a
linear operator from R” into R”, sets a column-vector in correspondence with its projections on to the
orthogonal complement of the subspace £ (X). We then use the following properties of projection
matrices.

1. The matrix P, is symmetric (P} = Py), idempotent (PyP, = Py) and degenerate (P, X = 0, the rank
of Py is equal to n — k).

2. The matrix P, is invariant with respect to the choice of basis in the subspace & (X): Py, = Py for
any non-degenerate 4 € M,,.

3. The solution of the following least-squares problem can be expressed in terms of the projection
matrix: min ||4X — B|{* = ||P,B|>.
X

This last point enables us to define the sine of the angle ¢ € [0, 7/2] between subspaces £ (X) and
L (X,), X, € M, as the maximum distance from the unit vector of one of the subspaces to the other
subspace

. 1Py Xall (2.4
sin ¢ = max —/5—— .
¢ = 23X TXoal )
Theorem 3. Let (X, Y) be the best &, 8-reduction of the matrix Z € M,,, of rank n, in the sense of the
Euclidean norm, and let the initial approximation ¥, € M,,, satisfy the condition rank Y{Y =k N, = . ..
= )\, are all the eigenvalues of the matrix ZZ™. Then for the iterative process

X =ZY_A, Y =2ZX, (2.5)
where the matrices A, are determined from the conditions X'X, =E, r=1,2,.. .,
NZ - XXl<d+dVkpw'tgo, (2.6)
where b = 82 |A7" ||, A= diag (A, . . ., \,) and ¢ is the angle between £ (X) and &£ (X,).

Proof. Since the matrices Z and Y, have full rank, for any » > 0 the rank of the matrices X, and ¥, is
equal to k. Hence at each iteration there is a non-degenerate upper triangular matrix 4,, defined by the
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condition X7 X, = E. It can be constructed simply by applying the Gram--Schmidt orthogonalization [3,
4] to the columns of the matrix ZY,_,.
The following identity can be verified by simple reduction:

Z-XYi =P Z=P, (Z—XY)(P,—P,Y,_ (YY_)"' T
We will introduce the notation O, = P, Y, (Y"Y,)"'Y", r=0, 1, . . .. Using (2.5), we will express the
matrix O, in terms of ¥,_,:
Q, = (PyZZPy) PyY, , (Y'Y, )7 A7'Y™
Since Y'Y = A and || ZP,]| = 8, for the norm of Q, we have:
HO U< UZP B NQ _NIHA'R<p Q. I, r=1,2,...
When any matrix is multiplied by a projection matrix, its norm can only decrease, and therefore
HZ =X, Yh<d+d1Q,_, Il <+ dp ' IQ, I
We will now find bounds for the norm of ;. Obviously, there are orthogonal (m X k)-matrices Y,
)N’O and non-degenerate (k X k)-matrices 4, A4, such that Y= Y4 and Y, = IN/OAO. Using the identity
1Qol1*= tr 030, we obtain
HQP < tr (Y;YY'V) ' —tr Y'Y < k/h— &k,

where \ is the smallest eigenvalue of the matrix G = Y1YY"Y,. Since the matrix G is symmetric and
positive definite,

. aGa
A= min ——.
« aa

Making the substitution YY"=E— Py in G, using (2.4) we find

- P, Y,alP ,
BT 7 T R

Notice that cos ¢ # 0, since the matrix Y;Y is non-degenerate. Thus,

o< V—=L—_k =vVige,

cos @

whence the required inequality follows at once. This proves the theorem.

The estimate (2.6) shows that if the error of the initial data is sufficiently small, the procedure (2.5)
achieves acceptable accuracy even at the first iterations. In particular, if the initial matrix is k-reducible
(8 = 0), the equation Z = X, Y7 is satisfied exactly for any ¥ satisfying the condition rank Y7Y = £.

Notice that if the matrices 4, are upper triangular, any number of iterations can be performed on the
first ¢ columns of the matrices X and ¥ without having to know the other £ — ¢ columns. This gives a
more flexible algorithm, in which iterations with respect to r are alternated with the addition of new
columns to the matrices X,, ¥,. To be more precise, after adding a new (gth say) column to the matrix
Y,, we compute the gth columns of the matrices X, ¥,, X, ¥,, and so on. The addition of columns must
be stopped as soon as the error (2.6) becomes less than a given value d after a sufficient number of
iterations N. Thus, this modification of the procedure (2.5) enables the number & to be determined from
the condition that the reduction has reached the prescribed accuracy. We now write this algorithm in a
form that can be implemented on a computer. We will use the notation

Z=lz...2,]€M,, X, [xT"'x’v]eMna’ P’GEPX:,’ Py = E,

r=1,2,...,N;

Y)=1ly...yJJeEM,, h ..., h €M,

m, 1

r=0,1...,N, ¢gz1.

9
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Algorithm

Input. Z € M,,, accuracy d = 0, number of iterations N > 0.
Step 1. Hy: =||Z|I%

Step 2. hy: =zl forallj=1,2,...,m

Step 3. Forg=1,2,..., repeat steps 4-10.

Step 4. yo: =h,

Step 5. Forr=1,2,..., N, repeat steps 6—7.

Step 6. X = P_\Zy"/|P_ 2y

Step 7. y;: = ZTx;.

Step 8. hy,: = jq 1—(yjq)2 forallj=1,2,...,m

Step 9. H,: = =y

Step 10. Contmue for as long as H,>d”.

Result: (X)), YN :|1Z—X] (Y]))"|l = d, X} has been orthonormalized.

It is not guaranteed that the matrix pair (X}, Y7) found by this algorithm will be a g, d-reduction of
Z, since in the general case the number of columns g cannot satisfy the minimality condition. However,
it is clear from the following assertion that, by the suitable choice of the parameters of the algorithm N
and d, one k, d-reduction of the matrix Z can be determined.

Assertion. Suppose that all the conditions of Theorem 3 are satisfied and p. < 1. Then for any ¢ € (0,
\,), there is a natural number N, such that, for d*> =||Z — XY"||* + ¢ and N= N, the matrix pair
computed by the algorithm will be a &, d-reduction of Z.

Proof. It is easily verified (cf. Steps I and 9) that #, = (|Z — X} (Y))"lI>, g =1, 2, . . .. Hence, the
termination condition of the algorithm (Step 10) cannot be satisfied for ¢ < £, since otherwise, according
to Theorem 2, € would have to be greater than \,. On the other hand, by using (2.6) to express the iteration
number r, for g = k and

N21+(lnp)"ln[ V_(\/1+z/82—1)]

the termination condition will be satisfied and the matrix pair (X)), Y7) obtained by then will be a &,
d-reduction of Z. This proves the assertion.

Thus, for a suitable choice of the number of iterations N and threshold d, it is possible to determine
one of the %, d-reductions of Z. In practice, it turns out that if we put N = 2—4 and d = (1.2—1.6) 3, then
with very rare exceptions, the matrices X, ¥ will not contain superfluous columns.

We note that if £ <<min (n, m), the algomhm can be used to compress the initial data efficiently by
replacing the matrix Z by a pair of matrices of much smaller size. This enables large teaching samples
to be stored even when the memory is limited.

3. OPTIMAL #-REDUCTIONS

In order to ensure that the description of an admissible surface that is sought is unique, we need to
solve the regularization problem, imposing additional constraints on the set of underived surfaces. The
a priori information used for this purpose must satisfy two conditions. Its use must be justified in the
framework of the problem to be solved, and it must be sufficient for one to be able to identify a unique
solution from the infinite set of solutions.

Consider the following method of taking account of a priori information. Only those functions of the
form f(x) g (y) that will be put in the class of underived surfaces are those for which f(x) belongs to
the prescribed family of functions &. As before g () can be any function.

For a fixed set of n numbers §, € Q,, i = 1, 2, . . ., n, the family F induces the set of column vectors

Fo={U/&).. . 7EIT: fEF}
and the set of » X k matrices with columns from %,
Fu={luy...,): u, €%, s=1,2,...,k}.

Let (X, Y) be a known k-reduction of the matrix Z, and for simplicity let the columns of X be
orthonormalized, X" X = E. The problem is to determine the conditions which must be satisfied by the
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family & for there to be a unique matrix U € %, (unique apart from permutation of the columns), such
that £ (X) = £ (U), and also to find a way of computing this matrix.

Definition 3. The family of functions % is said to be k-non-linear with respect to the set of points
&, ..., &,), if for any pairwise different column-vectors u,, . . ., u, of the set &, and any real q,, . . .,
a, auy + .. tau F ug.

There are famxhes of functions which possess this property. For instance, the parametric famxly
Fo= {e=¢" 9" 4 € R} is k-non-linear with respect to any set of n different points forall k=1, 2, .

n — 1. To prove this, we form a [n X (k+ 1)]-matrix of arbltrary pairwise-different column-vectors uo,

., u, belonging to the set 2. By virtue of the identity e~ W' = g gtrag=a’ , its first £ + 1 rows form

a square matrix, which can be obtained by multiplying the rows and columns of the generalized

Vandermonde matrix [3] by positive numbers. The determinant of that matrix is non-zero. Hence, the

column-vectors u,, . . ., u, are linearly independent, and since they are arbitrary, the given family is
k-non-linear.

There are also families which do not possess the given property. In particular, any linear family of

functions, such as the set of polynomials of given degree, cannot be k-non-linear. It will become clear

that such families of functions cannot be used for regularization.

Definition 4. The family of functions ¥ is called k-correct with respect to the set of points (§;. . .
g,) for a given matrix X € M,, of rank k if there is a non-degenerate (kX k)-matrix 4 such that
X4A€eF,

Theorem 4. If & is a family of functions which is k-non-linear and k-correct with respect to the set
of points (&, . . . §,) for a given matrix X, there is a unique matrix U, € ¥, (apart from permutation of
the columns) such that & (U,) = &£ (X).

Proof. By virtue of the k-correctness of the family & in the subspace £ (X) there are k linearly
independent column vectors uf, . . ., uf belonging to %,. By virtue of k-non-linearity, there cannot be
any other elements &, in & (X). Hence, the matrices U € %, satisfy the condition & (X) = £ (U) if, and
only if, they are made up of column vectors u}, . . ., uf taken in any order. This proves the theorem.

It is clear from the proof that k-non-linearity ensures uniqueness, and k-correctness ensures the
existence of a regularized solution.

In practice it is impossible to guarantee that the subspaces & (X)) = & (U) coincide exactly for many
reasons: because of the errors of the initial data or the errors in computing the matrix X and, most
importantly, the inaccuracy of the description of underived surfaces by elements of the family. We will
therefore relax the condition for k-correctness: we will seek a matrix U, € %,, for which the functional

J(U) = IP,XIP,
which vanishes if, and only if £ (X) = £ (U), reaches a minimum. Thus, minimization of the matrix

must lead to the required solution in the case of k-correct families.
We will orthonormalize the columns of the matrix U = [u;. . .u;], applying to them the Gram—-Schmidt

procedure, and denote the resulting matrix by U={#, . . . #,]. We will determine the sequence of
projection matrices

P|=E,,, P,=P,7‘...P;;_.lEE"IZ[ZT‘"..."EI_,I‘I:_,, S=2,3,...,k.
Then

u,=Pu/NPul, s=1,2,.

Owing to the elementary properties of a Euclidean matrix norm

- - LWPLPu, IR
J (W) =upUIR=3 T;W

s=|
We note that P, P, = P, in the case of k-correctness, and thus the functional J (U) can be replaced by its
upper bound

IIP P

s=|
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without violating the condition J(U) = 0 < £ (X) = £ (U). We will introduce notation for the terms in
3.1

Jo)y=J, (u, ... u_,u) = WPwWIB/WPuIR, s=1,2,... k, (3.2)
and consider the sequence of minimizations

uf = arg mgg Jout .. uf u), s=1,2,... k. (3.3)
uES,

If the family ¥ satisfies the conditions of Theorem 4, the successive minimization (3.3) leads to the
required minimum of the functional J (U). For, by virtue of k-correctness, there is a set of different vectors
u?, . . ., u} which make the functionals J,, . . ., J,, respectively, zero. Due to k-non-linearity, this set is
unique, and the vectors in it are linearly independent. The matrix U, formed from these vectors is the
unique matrix (apart from permutation of the columns) which makes the functional J(U) a minimum,
equal to zero.

Thus, the minimization of J(U) with respect to the set &, , can be reduced to the much simpler
problem of successive minimization of the functionals Ji, . . ., J, over the set .

In the general case, when the minimum of J (U) is not equal to zero (there is no k-correctness), one
can speak only of approximate minimization with the help of (3.3). It is clear, however, that the better
the family & describes the functions f(x), the closer the minimum of the functional J (U) is to zero, and
the closer the matrix U, computed with the help of (3.3) is to the matrix which minimizes J (U). Whether
or not the condition of k-correctness is satisfied, the concept of an optimal k-reduction can be introduced.

Definition 5. The optimal k-reduction is the matrix pair (X,, ¥,) € M% for which the functional
X, N=1X-Ul, (X, €M,
is a minimum, where U, is the matrix computed by the algorithm (3.1)—(3.3).

It is easy to obtain formulae to calculate the optimal k-reduction by minimizing & with respect to the
set M?% and using Lemma 2:

Xy = XX'Uy, Y,=YUiX)™".
We will consider two special cases.

Case 1. For the teaching of pattern recognition {1, 2], the family % can be taken as a finite set of /
functions F, (x), . . ., F;(x), forming the underived elements of admissible surfaces of objects of the
teaching sample (/ is the sample length). In that case, minimization of each of the functionals J; in (3.2)
reduces to a linear examination of / elements of the set F.

It is taken for granted in this approach that the following hypothesis is accepted: “the function f(x)
of an underived element of an admissible surface of the object to be classified is equal, or at least, very
close to one of the functions F) (x), . . ., F, (x)”. Clearly, if only one teaching sample is used to solve the
regularization problem, the sample might have to be longer than could be justified merely on teaching
grounds.

Case 2. Let F = {f(x, @):a € R”} be a parametric family of functions satisfying the conditions of
Theorem 4. Minimization of the functionals J,, . . ., J; in (3.3) will obviously reduce to the minimization
of k functions of p variables over the set of admissible values of the parameters. The well-known
optimization methods [5] can be used to solve the problem, the initial approximations conveniently being
taken as the approximations of the functions F (x) of underived elements chosen from the teaching sample.
One could use algorithm (3.1)-(3.3) to pick out the & most suitable teaching objects for this purpose, as
before.

Hence, by restricting the set of underived surfaces by a priori assignment of a family of functions
which corresponds to the specific accuracy and non-linearity conditions, and then computing the optimal
k-reduction, one can identify the unique structural description of the original admissible surface and
thereby solve the problem.
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