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Basic algorithms Linear specification Ordinal specification Ordinal features

Decision support and Integral indicator construction

The integral indicator is a measure

of object’s quality. It is a scalar, corresponded to an object.

The integral indicator is an aggregation

of object’s features that describe various components of the term
“quality”. Expert estimation of object’s quality could be an integral
indicator, too.
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Basic algorithms

Examples
Index name Objects Features Model
TOEFL exams Students Tests Sum of scores
Eurovision Singers Televotes, Linear
Jury votes (weighted sum)

S&P500. NASDAQ

Time-ticks

Shares

(prices, volumes)

Non-linear

Bank ratings Banks Requirements By an expert
commission
Integral Indicator | Power Plants | Waste Linear
H ’
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Basic algorithms Linear specification Ordinal specification Ordinal features

There given a set of objects

Croatian Thermal Power Plants and Combined Heat and Power
Plants

® Plomin 1 TPP

® Plomin 2 TPP

O Rijeka TPP

O Sisak TPP

® TE-TO Zagreb CHP
® EL-TO Zagreb CHP
@ TE-TO Osijek CHP
@® Jetrovac TPP
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Basic algorithms Linear specification Ordinal specification Ordinal features

There given a set of features

Outcomes and Waste measurements
@ Electricity (GWh)

@ Heat (TJ)

© Available net capacity (MW)
O SO: (t)

© NOX (t)

@ Particles (t)

@ CO2 (ki)

@ Coal (kt)

© Sulphur content in coal (%)
@ Liquid fuel (kt)

@ Sulphur content in liquid fuel
(%)
® Natural gas (10° m?)
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Basic algorithms Linear specification Ordinal specification Ordinal features

How to construct an index?

Assign a comparison criterion

Ecological footprint of the Croatian Power Plants

Gather a set of comparable objects
TPP and CHP (Jetrovac TPP excluded)

Gather features of the objects

Waste measurements

Make a data table: objects/features
See 7 objects and 10 features in the table below

Select a model

Linear model (with most informative coefficients)
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Basic algorithms

Data table and feature optimums

2 —

N Power Plant S _ 2
£

wo 2

1 Plomin 1 TPP 452 0
2 Plomin 2 TPP 1576 0
3 Rijeka TPP 825 0
4 Sisak TPP 741 0
5 TE-TO Zagreb CHP 1374 481

6 EL-TO Zagreb CHP 333 332
7 TE-TO Osijek CHP 114 115

~= o g g8
= < =~ €3 o
s < > .88 3282 8§
8% e e 3 € 223 &3 g% TE
T o i x £ S ® 2§ S 23 2¢
28 8 £ 8§ 8 83 Z3c 382
98 1950 1378 140 454 198 0.54 043 0.2 0
192 581 1434 60 1458 637 0.54 037 0.2 0
303 6392 1240 171 616 O 0 200 22 0
396 3592 1049 255 573 0 0 112 179 121
337 2829 705 25 825 0 0 80 1.83 309
90 1259 900 19 355 O 0 39 21 126
42 1062 320 35 160 0 0 37 1.1 24
max, min| min,min| min min| min| min| min__min
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Basic algorithms

Notations
X = {xjj} is the (n x m) is the real matrix, the data set;
Yy =[y1,...,ym]" is the vector of integral indicators;
w = [wi,...,w,]" is the vector of feature importance weights;

Yo, Wq are the expert estimations of the indicators and the weights;

w1 Wo Wn
T yi | Xxu1 X2 ... Xin
w
= Y2 | Xo1 X2 ... Xop
y| X
Ym | Xm1 Xm2 ... Xmn

Usually, data prepared so that

e the minimum of each feature equals 0, while the maximum
equals 1;

e the bigger value of each implies better quality of the index.
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Basic algorithms Linear specification Ordinal specification Ordinal features

Pareto slicing

Find the non-dominated objects at each slicing level.

feature,

L ~0b ]:L

ob )5
_obj ;L; 0;,% """"""""""""""
. L( N T ?

obj, 0bjs """"""""""""""""""""" b
~— feature,

moon I

The object a is non-dominated

if there is no b; such that bj; > a; for all features index j.
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Basic algorithms

Metric algorithm

The best (worst) object is an object that contains the (maximum)
minimum values of the features.

The index is

r

r
yi=r Z <Xij _ X})est)

j=t

For r = 1, this algorithm
coincides the weighted sum
with equal weighs.

feature,
A

the best

'””55.

> feature,

the worst
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Basic algorithms Linear specification Ordinal specification Ordinal features

Weighted sum

Y1 = XWO’
%1 X11 X12 v X1n wq
)% _ X21 X22 e X2n wo
Ym Xmi Xm2 --- Xmn Wm
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Basic algorithms

Principal Components Analysis
Y = XV, where V is the rotation matrix of the principal
components. The indicators ypca = Xwipc, where wipc is the 1%
column vector of the matrix V' in the singular values
decomposition X = ULV T.

fea‘r‘urez obj, 1PC

obj, 0 5 42 .

* _obj- q49/ , ob

2PC ST e
q}q6 obj,
objs P
' 0bj;

» feature,

PCA gives minimum mean square error between objects and their

projections.
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Basic algorithms

The Integral Indicator

Ecological Impact of the Croatian Power Plants

Integral
Power Plant Indicator
TE-TO Zagreb CHP 253 '
EL-TO Zagreb CHP 249 '
TE-TO Osijek CHP 246
Plomin 2 TPP 183 '
Rijeka TPP 157 '
Sisak TPP 148 '
Plomin 1 TPP 107 '

0 0.5 1 1.5 2 25
Integral Indicator
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Basic algorithms

The Importance Weights of the Features

Feature Weight
Coal (1) 0.38
Sulphur contentin coal (%) 0.37
NOX (1) 0.35
Liquid fuel (t) 0.34
S02 (1) 0.34
Particles (t) 0.33
Natural gas (103 m3) 0.30
CO2 (kt) 0.29
Sulphur contentin L.fuel (%) 0.18
Available net capacity (MW) 0.12

0 005 01 015 02 025 03 035
Features' importance
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Basic algorithms

The PCA Indicator versus Pareto Slicing

267 TE-TO Zagreb CHP",
ELZTO Zagreb CHP

245 TE-TO Osijek CHP !
22}

o

g 2 Plomin 2 TPP

i}

€ 18 *

© - -

5 Rijeka TPP

% 1 6 r 4&/’/

1 Sisak TPP

1 Pi6min 1 TPP

1 L 1
1 15 2 25 3 35 4
Pareto Slicing for 002 and Particles

15 /36



Basic algorithms

Pair-wise comparison, toy example

alsl|p|i-c apple soup (rpf) le Y
apple o |+ |+ |+ < A A .
soup o |+ |— vice- (I
. ”
Porrldge o | — : ) “crean
fee-credm ° porridge  ice-cream )
S()Ilp\\‘g

porridge 1

If an object 1 a row 1s better than the other one m a column then put *“+7,
otherwise ~-.

Make a graph, row + column means row e——e column.
Find the top and remove extra nodes.
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Basic algorithms Linear specification Ordinal specification Ordinal features

The expert-statistical method

Having plan matrix X and expert-given target vector yo, compute

optimal parameters

Least squares:
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Linear specification

The problem of specification

e We have
expert estimations yg, wo,
calculated weights and indicators wi; = XTyq, y1 = Xwyg.

e Contradiction. In general,

Y1 # Yo, Wi # Wo.

e Concordance. Call the estimations y and w concordant if the
following conditions hold:

y=Xw, w=XTy.
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Linear specification
Expert estimations concordance

e Denote by yj = XXTyq the projection of the vector yq to the
space of the columns of the matrix X.

e a-concordance method: vectors wy, Yq,
Wy = awg + (1 — a)XTyg,  yo = (1 — a)yy + aXwy,
are concordant for a € [0; 1].

Features space, dim n Objects space, dim m
L]
Yo

¥ ;
Y\ 0 X subspace, dim n
" ‘
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Linear specification

~-concordance

The ~-concordance method finds concordant estimations in the
neighborhoods of the vectors wy, y; as a solution of the following
optimization problem,

_ L2 252
wy = arg min (e +7°5%),

where e2 = |lwp — w,||? and @2 = llyo — y4 1%

Features space, dim n Objects space, dim m

9> = |y - val

Ya
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Basic algorithms Linear specification Ordinal specification Ordinal features
Concordance methods comparison

The x-axis shows the values of the parameter a changing from 0 to
1, whereas parameter ~ is the function of «,

so 7 changes from 0 to oc.

—a~—concordande
—y-concordanc

Object estimations, y
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Ordinal specification

Ordinal-scaled expert estimations

Experts make estimations in the ordinal scales:

yi=..2ym=0,
w1 > ...>=2w, > 0.
In matrix notations:
-1 0 ... 0
Jmy 2 0, -1 ...

where J = 0 1 1 0
Jw207 ...................
0 O 0 1

Consider two cones instead of two vectors:

Y ={y|Jmy = 0},
W ={w|J,w > 0}.

22/36



Basic algorithms Linear specification Ordinal specification Ordinal features

Ordinal specification

e The linear operator X maps the cone W, of the expert
estimations of the criteria weights wg to the computed
cone XW.

e The linear operator XX maps the cone )y of the expert
estimations of the objects yg to the cone Vj = XX* ).

Features space, dim n Objects space, dim m

X+ XWo

Wo Yo
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Basic algorithms Linear specification Ordinal specification Ordinal features

Cones intersection: specification is needed

The cones Y, XW do not intersect: the expert estimations
contradict each other.
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Basic algorithms Linear specification Ordinal specification Ordinal features

Cones intersection: no specification is needed

The cones Y, XW intersect: the expert estimations do not
contradict each other.

V2
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Basic algorithms Linear specification Ordinal specification Ordinal features

Nearest vectors in the cones

Distance minimization:

(v w) = _min _lly = Xwliz subject to [ Xw]z = 1,[y]l = 1

Correlation maximization (p is the Spearman rank-correlation
coefficient):

(y'wh) = jemax oy, Xw) subject to [ Xwllz =1, ]lyll2 = 1.
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Ordinal specification

Alternative approach: Nearly-Isotonic Regression

Again, the expert estimations:
Ow=>...2w, =0,
0 w = X"y,

The problem of specification in rank scales:

R . 1 n N n—1
w=arg min | =3 (% —w)*+ AY (wi—wi)e |,
j=1 =1

ref. to yo ref. to expert estimations of w

where \ is a regularizer.
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Basic algorithms Linear specification Ordinal specification Ordinal features

Nearly-isotonic regression algorithm: illustration
A blue dot is a feature weight.

z(wj) = w;, n=100.
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Basic statements

The goal:

to construct a model of the IUCN Red List threatened species
categorization using expert estimations of the features.

The model must:

@ use ordinal scales of expert estimations,
@ obtain optimal complexity,

© rely on expert-given categorization.
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Features assumptions

The following assumptions about features structure are
considered:

@ the given set of features is sufficient to construct an adequate
model;

® the complete order relation is defined on the feature values;

© the rule "the bigger the better” is valid, that is the greater
feature value causes the greater preference by an object;

O different expert estimations of the same object are allowed.
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List of features

@ Population size.

® Growth rate.

© Occurency/density.

O Physiological state.

@ Habitat state.

® Population structure trend.
@ Monitoring.

® New populations.

© Capacity build.
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Input data

A data fragment.

Species: Russian desman

Feature Condition Change trend
Population size 3 — high; 4 — grows;
2 — low; 3 — stable;
1 — critical 2 — decreases slowly;
1 — decreases rapidly
Population 2 — complex; 2 — stable;
structure 1 - simple 1 - local populations
disappear

A partial order is defined over the set of features.
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Problem statement

There is given
a set of pairs ©® = {(x;,yi)}, i € Z={1,..., m}.

Ordinal scales and class labels

Every object x = [X1,.--,Xj,---,Xd] . is described by
ordinal-scaled features x; € Lj = {1 < --- < k;}. A partial order is
set over the set of features.

Over the set Y = {1,2,3} of the class labels y it is given a strict
order relation: 1 < 2 < 3.

The goal is to construct a monotone function ¢: x — y

|

Yopt = argmin S(yp) = arg min — Z r (yi, p(xi))-
@ e MizZ
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Dominance relation

Algorithm

Twoclass monotone classification
Multiclass monotone classification

Feature 2
£

@

N

Xn

Xi

Xp

4
Feature 1

6

Without features hierarchy

Xp ™ n X,
if xpj > xjj foreach jeJ.

Xp ™ p Xk,
if xpj < xij foreach jeJ.

Any object doesn't dominate
itself: x n X, X ¥p X
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Algorithm I
& Twoclass monotone classification

Multiclass monotone classification

Dominance relation

With features hierarchy
Leat a feature r be more important than t.

Xn =5 Xi, if Xp >=n X;

or Xpr > Xpt and X/t =, x;. 8

o Xk

L xp
: S %
Xp =5 Xk, if Xp > p X §4
or Xpr < Xpr and X1 = Xy i 2
2 o "
X

Any object doesn’'t dominate o
o If 0 2 4 6 8
itself: x 5 X, X ¥px. Fagurel
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Algorithm I
& Twoclass monotone classification

Multiclass monotone classification

Dominance areas

The feature 1 is more | The feature 2 is more
important than 2 important than 1
8 8
NG = N6 =
Xp1 > X s s
nl n2 54 §4
Xp1 < Xp2 ) = ] =
GO 2 4 8 0 2 4 6 8
Feature 1 Feature 1
8 8]
6 6/
o~ S N Xp
Xn1 < Xp2, | & ’ 2
nl n2 54 - #4 N
Xpl > Xp2 ] ]
OO 2 4 6 8 0 2 4 6 8
Feature 1 Feature 1
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Algorithm I
& Twoclass monotone classification

Multiclass monotone classification

Optimal Pareto fronts

POF,, POF,

A set of objects x, if for each element doesn't exist any other
element x’ such that
POF,: X' >=,x (X' =5x); POF,: X' >px (X' >5x).

©
—

©
—

Feature 2
Feature 2
PN WA 0O N ®

P N Wb OO N ®©

4 6 4 6
Feature 1 Feature 1
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Algorithm I
& Twoclass monotone classification

Multiclass monotone classification

Two-class classification

x — a classified object
f(-) — a classifier function

0, Xp 7 n X;
1 Xp = p X;
f(x) = ’ PP
f argmin  (p(x,x')) |, otherwise.
x' €POF,UPOF,

POF,, POF, are boundaries of dominance spaces for the
corresponding optimal Pareto fronts.
p is a distance function between objects,

p(x.X) = 37 (. ).

j=1
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Algorithm

Twoclass monotone classification

Multiclass monotone classification

Two-class classification example

-------------- 1 2.
O

je b4

2 4 6

Feature 1

Ne | Object x | f(x)
1| (45) 0
2 (6,7) 1
3 (9,6) 1
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Algorithm I
& Twoclass monotone classification

Multiclass monotone classification

Separable sample construction

9r L 9r L

8r L] ] ] 8r [ ] [ ] n

7+ [ ] [ ] 7+ [ ] [ ]
o 6f L @ o~ 6r ]
g g
S 5t n =i =
8 8
L 4+ @ L 4+

3r 3r

2r 2r

[

® 2 4 6 8 1 2 4 6 8

Feature 1 Feature 1
(c) With defective objects (d) Without defective objects
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Algorithm e e
& Twoclass monotone classification

Multiclass monotone classification

Monotone classifier definition

{1<---<u=<u+1=<--=<2z} =17 — class labels

fuut1: x — ¥ € {0,1} — two-class classifier for a pair of adjacent
classes

«0» — classes with labels y < u
«1» — classes with labels y = u+1

min{u | fy y+1(x) =0}, if {u | fyur1(x) =0} # 0;
p(x) = § ve”

z, if {u]| fuur1(x)=0}=0.
L2 ... |lu—1u|luu+1|..]z-1, 2
1 1 0 0
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Algorithm e e
& Twoclass monotone classification

Multiclass monotone classification

Multiclass classification example

N Feature 1 ®
Ne | Object x | fia(x) | fa3(x) | ©(x)
1] (L) 0 0 1
2 | (5.4) 1 0 2
3] (9.9) 1 1 3
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Algorithm e e
& Twoclass monotone classification

Multiclass monotone classification

Fronts extension for monotone classification

9 9
8 8
7 7
6 o 6
5r---@ gS----.
4 §4
3 3
2 2
1 1

Feature 2

4 6 4 6
Feature 1 Feature 1

(e) Without extension (f) With extension

A common object for two n-fronts
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Algorithm e e
& Twoclass monotone classification

Multiclass monotone classification

Admissible classifiers

Transitivity condition

fuut1(x) =0= f(u_,_s)(u_,_l_,_s)(x) =0 foreachs:(u+1+s)<z
fuut1(x) =1= f(u—s)(u—i—l—s)(x) =1 foreachs: (u—s)>1

Definition

Classifier ¢ is called admissible, if for every classifier function f, 41
the transitivity condition holds.

Theorem

If the Pareto optimal fronts POF,(u) and POF,(u + 1) don't
intersect for each u=1,...,z — 1, then the transitivity condition
holds for any classified object.
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Algorithm illustration
Initial sample of objects

9 n
8 m o= oowm
7 ° A = m
6r ° E @
5r @ A ® u
4 o o = °
[ J
> 4 6 8
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Algorithm illustration
Objects of the category 2

o
gl

Tr ®

Or [

5r @ [ ]

4 o o °

3 °®

ol

17 4 6 8

18 /24



Algorithm illustration

Optimal Pareto front (POF,)

o
gl

7 e

6 )

5 e I o

4+ { [ L--'.

3 °

ol

17 4 6 8
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Algorithm illustration
Objects of the category 2 and 3

Or ]

8 m = =
7! . -
6 u

5r ® :- ------ ? n
4 { ] o L--'.

3 °®

ol

S 4 6 8
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Algorithm illustration

Optimal Pareto fronts (POF,, POF,)

RN W B O N 0 ©
°
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Algorithm illustration

Model with all fronts

S 1 » N 0 ©

2

=N
1
i
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Algorithm illustration

Excluded defective objects
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Algorithms comparison
Experiment

Algorithms comparison

. Mean Time of model
Algorithm erroron | LOO .
test construction, sec
POF (proposed) 0.22 0.56 2.1
Decision trees 0.25 0.69 0.4
Curvilinear regression ' | 0.57 | 0.71 3.6
Cones 2 029 | 0.58 1.2
Copulas 3 0.57 0.61 0.25

15A M.P. Kuznetsov, V.V. Strijov, M.M. Medvednikova Multiclass classification algorithm of the

ordinal scaled objects // St. Petersburg State Polytechnical University Journal. Computer Science.
Telecommunication and Control Systems, 2012. Ne. 5. C. 92-95.
1. M.P. Kuznetsov and V.V. Strijov. Methods of expert estimations concordance for integral
quality estimation Expert Systems with Applications, 41(4):1988-1996, March 2014.
Kuznetsov M.P. Integral indicator construction using copulas // Journal of Machine Learning and
Data Analysis. 2012. V. 1, Ne 4. Pp. 411-419.
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