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The BCI project

aims to develop compensating systems that will help people with a
severe motor control disability recover mobility.
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Implant WIMAGINE to measure ECoG

o

records ElectroCorticoGrams, has remote power supply, and wireless
data transfer system.

WIMAGINE: Wireless 64-Channel ECoG Recording Implant for Long Term
Clinical Applications Mestais, G. Charvet, F. Sauter-Starace, M. Foerster, D.
Ratel, and AL. Benabid IEEE Trans Neural Syst Rehabil Eng. 2015

Jan;23(1):10-21. www.clinatec.fr
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Implant WIMAGINE to measure ECoG

detects the electrical activity in the motor cortex with
“minimally-invasive implantation in the cranium and, over the long
term, to measure ElectroCorticoGrams thanks to an array of
electrodes in contact with the dura mater.”

Eliseyev, A., and Aksenova, T. Stable and artifact-resistant decoding of 3D

hand trajectories from ECoG signals using the generalized additive model //
J. Neural Eng.(2014) 11, 066005. www.clinatec.fr
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The BCI project

“The subject placed inside the exoskeleton can drive it by imagining

movements as if they were making the movement themself.”
www.clinatec.fr
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Neurotycho data, foodtracking task

A monkey is tracking food rewards with the X: Lot-ight

hand contralateral to the implant side. The S o Y
experimenter demonstrated foods at random ﬂ’

locations at a distance of 20 cm for the

monkey at random time intervals 3-4 times per
minute, and the monkey grasped the foods

> Subdural (32 electrodes): 2 monkeys, 3 and 5 records, taken within 7 months.

> Each record measures about 1000 seconds with ECoG and motion data (wrists,
elbows and shouders) sampled at 1KHz and 120Hz, respectively.



ECoG and corresponding physical motion

Time, s

Extracts (350-370s) from voltage and wrist position time series for
monkey A and 3D wrist trajectory for the same extract.
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The feature construction procedure

Time bins
A

Elictrode 5

Electiod SEIS ,

. >
Frequency

)

Frequency

For each electrode a one-second long historical

interval [t,, — At, t,;] undergoes wavelet transformation and thus
obtains feature description in spectral-temporal domain. Merging
spectral-temporal feature matrices for all electrodes, one obtains
3D feature description X,,, for the time point t,.
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movement prediction

Nen  voltage measurements for each

Inputs: multivariate time series s(t) € R
channel 1,..., Nch.

Targets: multivariate time series y(t) € R® with 3D limb coordinates.
The goal us to reconstruct y(t) from s(t),...s(t — At).

The time series are converted to the data sample (D, Y):
QGRTXFXNChXM7 D(m,:,:,:) :lrm Y = [yI7"'7y-|l\;l]T7

such that ym = y(tm) and X, € RT*F*Nen is 3 three-way matrix, which stores
time-frequency features extracted from the time series [sp(tm — At), ..., Sa(tm))]
along all channels n, n=1,..., Ng.

The reconstructed trajectory Y approximates the real Y as a linear combination of
features:

§m = vec (lm)Tw7

Nep X3

where the weight vector w € RT'F minimize the squared sum of residues:

W = argmin ||Y — Y||3.
w



Feature extraction: time-domain features

Correlations between channels in time domain:




Cross-correlation between ECoG and target time series
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Absolute values of cross-correlation between ECoG and target time
series (wrist positions) in time domain for monkeys A (32
electrodes) and K1 (64 electrodes).
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Problem statement: feature selection

Absolute values of cross-correlation between ECoG and target time series in (left
wrist) frequency domain. No time delay 7 = 0.

WK 0 LW o

Frequeney

5/25



The auto-regressive design matrix for the multivariate target

Forecast is a mapping from p-dimensional objects space to
r-dimensional answers space.

- Projection to Latent
' Structures (PLS)

*uwe  X—TPT4E, PP =y,
Y:UQT+F, QTQZINa

- Y = Tdiag(3)Q™ = XW.
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Example of forecast (2D)

50 best (according to M-QPFS) features. Predicted trajectories are

smoothed by 2.5s window.
2D, 0p65, Tucker, 1, 1 @
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The forecasting quality measures

Train - HO, basch |

== Test

== Test

Train - HO, batch |

Correlation coef,
Correlation coef.

0 200 400 600 00 1000 0 200 400 600 800 1000
Number of features Number of features

Forecasting quality measures as correlation coefficient between the

original wrist trajectory and the reconstructed trajectory. Unfolded
QPFES (left) and Multi-way QPFS (right).
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Complexity and threshold value
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Evaluation of electrode-frequency pairs importance. Importance is
measured as feature rank, averaged over cross-validation splits.
Electrode ranks, averaged over frequencies. o



Average values of all quality criteria to compare algorithms
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Average values of all quality criteria for the compared algorithms
(left). Average rankings of the compared algorithms, the lesser the
better (right).
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Three characteristic time spans

v

An elementary movement

v

A motion

v

An action

v

The lifespan
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Complex action: workers construct a rack




Complex action: workers construct a rack




Complex action: workers construct a rack
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Acceleration, z,y, z

Classification of human physical activity with mobile devices

axis

Slow walking

Time ¢, s

3D-projection of acceleration time series to spatial

x = {acc(t); acc,(t); acc,(t)}r_q —y € RS,

Acceleration, z,y, 2

Pl




Local models for deep learning neural network

Model f = a(hp(...hi(x)))(w) contains local approximation
models h, autoencoder a and softmax classifier

B exp(a(x)) «) — WT T
f(w’x)_—zjexp(aj(x))’ a(x) = W, tanh(W; x),

where w minimizes the error function.

Feature generation, the local approximation models hy:

» parameters of SSA approximation of the time series x,
» FFT of x,

» parameters of polynomial/spline approximation,

v

self-modeling regression SeMoR,

v

distance to centroids,
> time-alignment

could reduce complexity this model down to complexity of logistic

regression and boost the classification quality. }
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Performance of the human physical activities classification

walk forward
walk left

Mean Accumcy 0. 9823 3

0% 99.9% 99-4% 97.2%

walk right
go upstairs

go downstairs

jump up and down

Objects number

sit and fidget

stand

Class labels 10 Sleep

)
)
)
)
)
6) run forward
)
)
)
)
)

elevator up

12) elevator down

Ignatov A.D., Strijov V.V. Human activity recognition using quasiperiodic
time series collected from a single triaxial accelerometer // Multimedia Tools
and Applications, 2015, 17.05.2015 : 1-14.

35 /40



Complex movement: the worker stretches a string while

walking

PACTAMMBAET HUTKY, MaeT
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Complex movement: the worker is drilling while standing

CTOMT, ChepAnT
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Complex movement: the worker is twitching his hand

0.2 CTOMT, AEPraer pyxoR

30/ 40



Human gate detection with time series segmentation

Find dissection of the trajectory of principal components y; = Hy;,
where H is the Hankel matrix and v; are its eigenvectors:

1
NHTH =VAV', A=diag(\1,...,\n).

Yiale)

Time series x(i)

0.05}

200 400 600 800 004 002 0 002 004 006
I'ime index i y;li)

Motrenko A.P., Strijov V.V. Extracting fundamental periods to segment
human motion time series // IEEE Journal of Biomedical and Health
Informatics, 2016, 20(6) : 1466 - 1476.
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The hammer clogs a dowel, eleme
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The hammer clogs a dowel, the movements join a motion
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The motion “to clog dowel”
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The motion and its neighborhood to discover an action
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