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The BCI project

aims to develop compensating systems that will help people with a

severe motor control disability recover mobility.

www.clinatec.fr
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Implant WIMAGINE to measure ECoG

records ElectroCorticoGrams, has remote power supply, and wireless

data transfer system.

WIMAGINE: Wireless 64-Channel ECoG Recording Implant for Long Term
Clinical Applications Mestais, G. Charvet, F. Sauter-Starace, M. Foerster, D.
Ratel, and AL. Benabid IEEE Trans Neural Syst Rehabil Eng. 2015
Jan;23(1):10-21. www.clinatec.fr
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Implant WIMAGINE to measure ECoG

detects the electrical activity in the motor cortex with

“minimally-invasive implantation in the cranium and, over the long

term, to measure ElectroCorticoGrams thanks to an array of

electrodes in contact with the dura mater.”

Eliseyev, A., and Aksenova, T. Stable and artifact-resistant decoding of 3D
hand trajectories from ECoG signals using the generalized additive model //
J. Neural Eng.(2014) 11, 066005. www.clinatec.fr
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The BCI project

“The subject placed inside the exoskeleton can drive it by imagining

movements as if they were making the movement themself.”

www.clinatec.fr
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Neurotycho data, foodtracking task

A monkey is tracking food rewards with the
hand contralateral to the implant side. The
experimenter demonstrated foods at random
locations at a distance of 20 cm for the
monkey at random time intervals 3-4 times per
minute, and the monkey grasped the foods

I Subdural (32 electrodes): 2 monkeys, 3 and 5 records, taken within 7 months.

I Each record measures about 1000 seconds with ECoG and motion data (wrists,
elbows and shouders) sampled at 1KHz and 120Hz, respectively.
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ECoG and corresponding physical motion

Extracts (350–370s) from voltage and wrist position time series for

monkey A and 3D wrist trajectory for the same extract.
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The feature construction procedure

For each electrode a one-second long historical

interval [tm ��t, tm] undergoes wavelet transformation and thus

obtains feature description in spectral-temporal domain. Merging

spectral-temporal feature matrices for all electrodes, one obtains

3D feature description Xm for the time point tm.
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Problem statement: movement prediction

Inputs: multivariate time series s(t) 2 RNch — voltage measurements for each
channel 1, . . . ,Nch.
Targets: multivariate time series y(t) 2 R3 with 3D limb coordinates.

The goal us to reconstruct y(t) from s(t), . . . s(t ��t).

The time series are converted to the data sample (D,Y):

D 2 RT⇥F⇥Nch⇥M , D(m,:,:,:) = Xm, Y = [yT1 , . . . , y
T
M ]T,

such that ym = y(tm) and Xm 2 RT⇥F⇥Nch is a three-way matrix, which stores
time-frequency features extracted from the time series [sn(tm ��t), . . . , sn(tm))]
along all channels n, n = 1, . . . ,Nch.

The reconstructed trajectory Ŷ approximates the real Y as a linear combination of
features:

ŷm = vec
�
Xm

�T
ŵ,

where the weight vector ŵ 2 RT ·F ·Nch⇥3 minimize the squared sum of residues:

ŵ = argmin
w

||Ŷ � Y||22.
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Feature extraction: time-domain features

Correlations between channels in time domain:

4 / 25



Cross-correlation between ECoG and target time series

Absolute values of cross-correlation between ECoG and target time

series (wrist positions) in time domain for monkeys A (32

electrodes) and K1 (64 electrodes).
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Problem statement: feature selection

Absolute values of cross-correlation between ECoG and target time series in (left
wrist) frequency domain. No time delay ⌧ = 0.
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The auto-regressive design matrix for the multivariate target

Forecast is a mapping from p-dimensional objects space to

r -dimensional answers space.

Projection to Latent

Structures (PLS)

X = TP
T + E, P

T
P = IN ,

Y = UQ
T + F, Q

T
Q = IN ,

Ŷ = T̂diag(�)QT = XW.

X
⇤ =

"
x

1⇥n
y

1⇥r

X
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Y
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#
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Example of forecast (2D)

50 best (according to M-QPFS) features. Predicted trajectories are
smoothed by 2.5s window.
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The forecasting quality measures

Forecasting quality measures as correlation coefficient between the

original wrist trajectory and the reconstructed trajectory. Unfolded

QPFS (left) and Multi-way QPFS (right).
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Complexity and threshold value

Evaluation of electrode-frequency pairs importance. Importance is

measured as feature rank, averaged over cross-validation splits.

Electrode ranks, averaged over frequencies.
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Average values of all quality criteria to compare algorithms

Average values of all quality criteria for the compared algorithms

(left). Average rankings of the compared algorithms, the lesser the

better (right).
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Three characteristic time spans

I An elementary movement

I A motion

I An action

I ...

I The lifespan
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Complex action: workers construct a rack
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Complex action: workers construct a rack
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Complex action: workers construct a rack
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Classification of human physical activity with mobile devices

3D-projection of acceleration time series to spatial

axis

x = {accx(t); accy (t); accz(t)}nt=1 7! y 2 RS .
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Local models for deep learning neural network

Model f = a(hN(. . .h1(x)))(w) contains local approximation

models hk autoencoder a and softmax classifier

f(w, x) =
exp(a(x))P
j exp(aj(x))

, a(x) = W
T

2 tanh(W
T

1 x),

where w minimizes the error function.

Feature generation, the local approximation models hk :

I parameters of SSA approximation of the time series x,

I FFT of x,

I parameters of polynomial/spline approximation,

I self-modeling regression SeMoR,

I distance to centroids,

I time-alignment

could reduce complexity this model down to complexity of logistic

regression and boost the classification quality.
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Performance of the human physical activities classification
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Mean Accuracy: 0.9823

1) walk forward

2) walk left

3) walk right

4) go upstairs

5) go downstairs

6) run forward

7) jump up and down

8) sit and fidget

9) stand

10) sleep

11) elevator up

12) elevator down

Ignatov A.D., Strijov V.V. Human activity recognition using quasiperiodic
time series collected from a single triaxial accelerometer // Multimedia Tools
and Applications, 2015, 17.05.2015 : 1-14.
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Complex movement: the worker stretches a string while

walking
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Complex movement: the worker is drilling while standing
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Complex movement: the worker is twitching his hand
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Human gate detection with time series segmentation

Find dissection of the trajectory of principal components yj = Hvj ,

where H is the Hankel matrix and vj are its eigenvectors:

1

N
H

T
H = V⇤V

T
, ⇤ = diag(�1, . . . ,�N).

Motrenko A.P., Strijov V.V. Extracting fundamental periods to segment
human motion time series // IEEE Journal of Biomedical and Health
Informatics, 2016, 20(6) : 1466 - 1476.
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The hammer clogs a dowel, elementary movements
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The hammer clogs a dowel, the movements join a motion
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The motion “to clog dowel”
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The motion and its neighborhood to discover an action
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