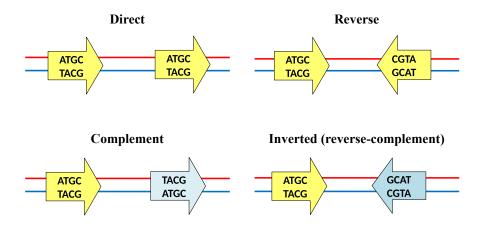
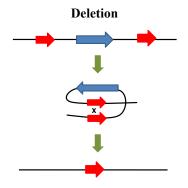
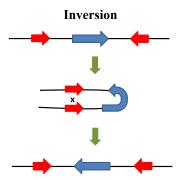

Multiple genome alignment based on a spectral-analytical approach

Pankratov Anton Nikolaevich

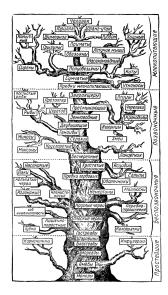

IMPB RAS - the branch of KIAM RAS

November 26, 2019


Types of repetitive sequences in genomes


Different orientation of repeats in the double strand of DNA

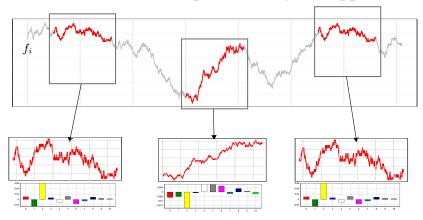
Recombination between repeats leads to block mutations


X-linked ichthyosis (STS). Yen et al. Cell. 1990.

Muscular dystrophy (EMD) Small et al. Nat Genet. 1997. Hemophilia (F8) Naylor et al. Hum Mol Genet .1995

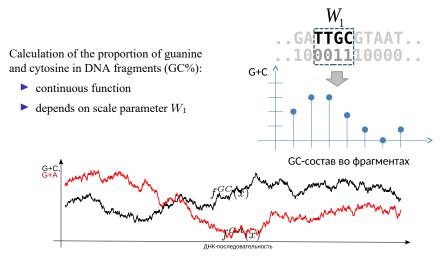
The use of repeats in evolutionary research

- Evolutionary research is aimed at identifying the relationship between different taxa.
 Repetitions are phylogenetic markers.
- The study of the genomes of close organisms. Repeats are extended sites of similarity.

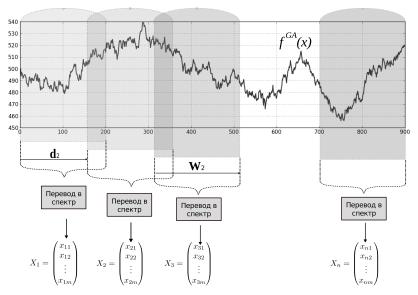


Repeats Search Challenges

- ► The appearance of mutations repeats become inaccurate
- The large length of the compared sequences (of the order of 10⁹ nucleotides) times the number of analyzed sequences (hundreds to thousands)
- ► The analysis is quadratic depending on the length of the sequences
- ► The determination of orthology rather than simple homology
- ► The determination of reference sequences (pan-genome)


Research paradigm: to construct a repeat search method based not on letter-by-letter comparison, but on some sort of numerical analysis of nucleotide sequences.

The main idea of the spectral-analytical approach


Dedus F.F., Kulikova L.I., Makhortykh S.A., Nazipova N.N., Pankratov A.N. and Tetuev R.K. Analytical Recognition Methods for Repeated Structures in Genomes. Doklady Mathematics, 2006, Vol. 74, №3, pp. 926-929

Conversion of the nucleotide sequence into an analog function

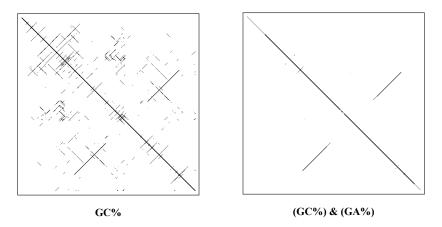
Theorem on inverse conversion: unambiguous recovery of sequence requires two linearly independent functions (GC%, GA%)

Conversion of analog functions into spectra of Fourier coefficients

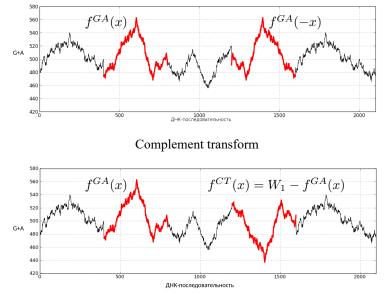


Comparison of coefficients and construction of a dot matrix

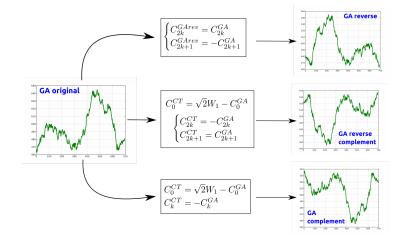
$$\sum_{i=0}^{L-1} (A_i - B_i)^2 \pi \le \int_{-\pi}^{\pi} (f - g)^2 \le 2\pi W_1^2$$
$$\Theta(f, g) = \frac{1}{2W_1^2} \sum_{i=0}^{L-1} (A_i - B_i)^2 \le \varepsilon \le 1$$


Metric

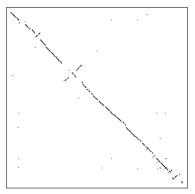
- bounded
- scale invariant
- monotonic in the number of coefficients

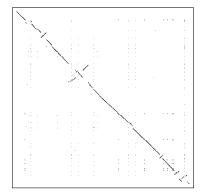

Each matrix point is the result of pairwise comparison of coefficient vectors

Decision rule: conjunction of threshold decision rules for each analog function



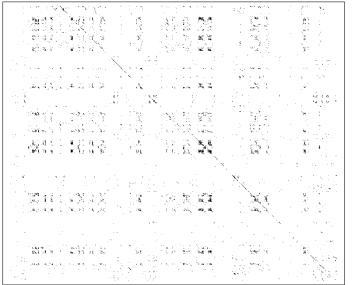
 $(\Theta(f^{GC},g^{GC}) \leq \varepsilon) \& (\Theta(f^{GA},g^{GA}) \leq \varepsilon)$


Reverse and complement transform of corresponding analog functions Reverse transform


Transformations over analog functions lead to corresponding transformations in the space of Fourier coefficients

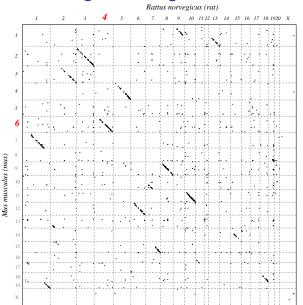
Dotplot of the bacterial genome by different methods

SBARS (Pyatkov M., Pankratov A. Bioinformatics. 2007.)

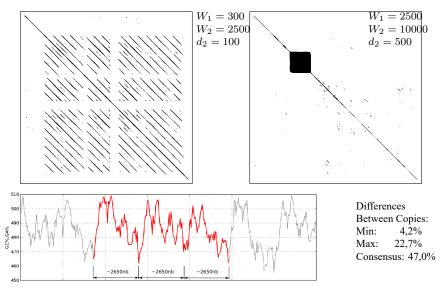

Gepard (Krumsiek J. et al. Bioinformatics. 2007.)

Sequence length	Gepard	SBARS
100000 b.p.	≈ 1 сек	≈ 1 сек
1000000 b.p.	5 sec	5 seq
5000000 b.p.	45 sec	14 seq
Y chr (27000000 b.p.)	5 min	27 seq

Y human chromosome *in silico*(by SBARS) *in vetro*(by DNA hybrid) Yp $W_1 = 25000$ $W_2 = 70000$ Øĸ $d_2 = 20000$ time ≈ 27 sec


Tilford CA et al. Nature. 2001

6 mouse chromosome (Mus musculus) vs 4 rat chromosome (Rattus norvegicus)


 $W_1 = 10^5$ $W_2 = 7 * 10^5$ $d_2 = 2 * 10^5$ time $\approx 1 \text{ min}$ length $\approx 10^8$

Whole genome alignment of mouse and rat

 $W_1 = 2.5 * 10^6$ $W_2 = 10^7$ $d_2 = 2.5 * 10^6$ time ≈ 40 sec length $\approx 10^9$

Tandem repeats

Pyatkov M.I., Filippov V.V., Pankratov A.N. Consensus of repeated region of rabbit chromosome 17 containing over 15 huge approximate tandem repeats. Repbase Reports. 2012. Vol.12, No.3.

Universal alignment tool for long repeats

Long Sequences Customizable Global Alignment Tool 🔅 🔅	Copy parameters from ~
Enter, Edit or Select file , where sequence is taken from first residue 18 to last residue 18 (QUERY)	A T G C S
Enter, Edit or Select file , where sequence is taken from first residue 🔅 to last residue 🔄 (SUBJECT)	A 2 -3 -3 -3 -3 -3 T -3 2 -3 -3 -3 G -3 -3 2 -3 -3 -3
GTCTTCGGCGCGGTGTTTAGAAACCTAGCCAAATTGTCGTTCGACGACGCGTGCGT	□ case sensitive
ALIGN	Gap penalties for Query Open Extend Model
Sequence Alignment IDENTITY (overall percentage): 14/1000000 = 0.00140%; SCORE: 22 IDENTITY (overlap percentage): 14/20 = 70.0%; TIMING: 2/1/1 s	+∞ +∞ Affine 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞ 0 ∞
Query 1 ATGCATGCNNNNATGCATGC	Gaps for Subject
	0 ↔ 0 ↔ Left = 0 ↔ 0 ↔ = Right
Sbjet 439201 CGATACTATCGCTAATGCATGCCGCTAGGCGTGCTCCGCCGGGGCTCTTTCAGGTTC 439260	Gap priority (back-tracing) * > * > * (Random)

Space complexity:

- ▶ $O(n^2)$ Needleman & Wunsh (full matrix), 1970
- ▶ O(n) Miller & Myers (recursive), 1988; Dryga (grid & recursive), 2006
- $O(n^{4/3})$ Tetuev, Pyatkov, Pankratov (grid), 2017