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ABSTRACT

Probabilistic topic modeling of text collections is a power-
ful tool for statistical text analysis based on the preferential
use of graphical models and Bayesian learning. Additive
regularization for topic modeling (ARTM) is a recent semi-
probabilistic approach, which provides a simpler inference
for many models previously studied only in the Bayesian
settings. ARTM reduces barriers to entry into topic model-
ing research field and facilitates combination of topic mod-
els. In this paper we develop the multimodal extension of
ARTM approach and implement it in BigARTM open source
project for online parallelized topic modeling. We demon-
strate the ability of non-Bayesian regularization to combine
modalities, languages and multiple criteria to find sparse,
diverse, and interpretable topics.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Clustering;
I.2.7 [Natural Language Processing]: Language models;
G.1.6 [Optimization]: Constrained optimization

General Terms

Theory, Algorithms, Experimentation

Keywords

Probabilistic Topic Modeling, Probabilistic Latent Sematic
Analysis, Latent Dirichlet Allocation, Additive Regulariza-
tion for Topic Modeling, EM-algorithm, BigARTM.

1. INTRODUCTION
Topic modeling is a rapidly developing branch of statisti-

cal text analysis [2]. Topic model reveals a hidden thematic
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structure of a text collection and finds a compressed repre-
sentation of each document in terms of its topics. Practical
applications of topic models include information retrieval,
classification, categorization, summarization and segmenta-
tion of texts. Topic models are increasingly used for non-
textual and heterogeneous data including signals, images,
video and networks. More ideas, models and applications
are outlined in the survey [7].

From a statistical perspective, a probabilistic topic model
(PTM) defines each topic by a multinomial distribution over
words, and then describes each document with a multino-
mial distribution over topics.

Modern literature on topic modeling offers hundreds of
models adapted to different situations [7]. Nevertheless,
most of these models are too difficult for practitioners to
quickly understand, adapt and embed into applications.
This leads to a common practice of tasting only the very
basic models such as Probabilistic Latent Semantic Anal-
ysis, PLSA [12] and Latent Dirichlet Allocation, LDA [4].
Most practical inconveniences are rooted in Bayesian learn-
ing, which is the dominating approach in topic modeling.

Bayesian learning is a very powerful and general theoreti-
cal framework, and topic modeling is just one of its applica-
tions. Bayesian inference is elegant when used with conju-
gate priors. However, from the linguistic point of view the
Dirichlet conjugate prior is not necessary the best choice as it
conflicts with natural assumptions of sparsity. Better moti-
vated non-conjugate priors require a laborious mathematical
work and lead to intricate learning algorithms. The develop-
ment of combined and multi-objective topic models also re-
mains a challenging task in the Bayesian approach. An evo-
lutionary approach to multi-objective Bayesian topic mod-
eling has been proposed in [14], but it seems to be computa-
tionally infeasible for large text collections. Until now, there
was no freely available software to combine topic models.

From an optimization perspective, topic modeling can be
considered as a special case of approximate stochastic matrix
factorization. To learn a factorized representation of a text
collection is an ill-posed problem, which has an infinite set
of solutions. A typical regularization approach in this case is
to impose problem-specific constraints in a form of additive
terms in the optimization criterion.

Additive Regularization for Topic Modeling (ARTM) is
a semi-probabilistic approach based on classical (non-
Bayesian) regularization [31]. In ARTM a topic model is



learned by maximizing a weighted sum of the log-likelihood
and additional regularization criteria. These criteria are
not required to be log-priors or even to have a probabilistic
sense. The optimization problem is solved by a general reg-
ularized expectation-maximization (EM) algorithm, which
can be easily applied to any combination of regularization
criteria. The non-Bayesian regularization provides a much
simpler inference for many topic models previously studied
only in the Bayesian setting [33, 32]. In particular, the LDA
model can be alternatively understood as a smoothing reg-
ularizer that minimizes Kullback–Leibler (KL) divergence
of each topic distribution with a fixed multinomial distri-
bution. The maximization of the KL-divergence naturally
leads to sparsing [33]. This possibility is difficult to see from
the Bayesian perspective, thereby all Bayesian approaches
to sparsing are much more complicated [26, 35, 16, 10, 5].

ARTM makes topic models easier to design, to explain, to
infer, and to combine, naturally reducing barriers to entry
into topic modeling research field.

In this paper we develop the multimodal extension of
ARTM approach and incorporate its parallel online imple-
mentation into BigARTM open source projet.

Multimodal data has become increasingly important in
many application areas. Large data collections coming from
the web or sensor networks consist of heterogeneous linked
data. Typically, texts are accompanied by images, audio or
video clips, usage data, metadata containing authors, links,
date-time stamps, etc. In these cases documents are con-
sidered as multimodal containers, words being the elements
of one of the modalities. All modalities are useful for de-
termining more relevant topics, and, vice-versa, topics are
useful for crossmodal retrieval, making recommendations for
users or making predictions when data of some modalities
are missing. We introduce the multimodal additively regu-
larized topic model with an arbitrary number of modalities
and generalize the regularized EM-algorithm for this case.

Online algorithms have proven to be very efficient for large
document collections, including those arriving in a stream.
Online algorithms are now available for PLSA [1], LDA vari-
ational inference [11], LDA stochastic inference [18], and
some other topic models. We show that the online algo-
rithm is not necessarily associated with a particular type
of model, nor a particular type of inference, but only with
a certain reorganization of steps in the EM-like iterative pro-
cess. Our online algorithm remains the same for PLSA and
LDA models, as well as for any combination of regularizers
and any number of modalities.

The rest of the paper is organized as follows. In section 2
we introduce notation and definitions of topic modeling and
ARTM. In section 3 we introduce a multimodal topic model-
ing for documents with additional discrete metadata. In sec-
tion 4 we generalize online EM-algorithm from [11] for mul-
timodal ARTM and discuss some details of its parallel im-
plementation in BigARTM library. In section 5 we report
results of our experiments on large datasets.

2. ARTM: ADDITIVE REGULARIZATION

FOR TOPIC MODELING
Let D denote a finite set (collection) of texts and W de-

note a finite set (vocabulary) of all terms from these texts.
Each term can represent a single word or a key phrase. Each
document d ∈ D is a sequence of terms from the vocabu-

lary W . Assume that each term occurrence in each doc-
ument refers to some latent topic from a finite set of top-
ics T . Text collection is considered to be a sample of triples
(wi, di, ti), i = 1, . . . , n, drawn independently from a dis-
crete distribution p(w, d, t) over the finite probability space
W × D × T . Terms wi and documents di are observable
variables, while topics ti are latent variables.

The topic model of Probabilistic Latent Semantic Anal-
ysis, PLSA [12] explains the terms probabilities p(w | d) in
each document d ∈ D by a mixture of term probabilities for
topics and topic probabilities for documents:

p(w | d) =
∑

t∈T

p(w | t) p(t | d) =
∑

t∈T

φwtθtd, w ∈ W.

This representation follows immediately from the law of to-
tal probability and the assumption of conditional indepen-
dence p(w | t) = p(w | d, t), which means that each topic gen-
erates terms regardless of the document.

The parameters θtd = p(t | d) and φwt = p(w | t) form ma-
trices Θ =

(

θtd
)

T×D
and Φ =

(

φwt

)

W×T
. These matrices

are stochastic, that is, their vector-columns represent dis-
crete distributions. The number of topics |T | is usually much
smaller than |D| and |W |.

To learn parameters Φ, Θ from the collection we maximize
the log-likelihood:

L (Φ,Θ) =
∑

d∈D

∑

w∈W

ndw ln p(w | d) → max
Φ,Θ

,

where ndw is the number of occurrences of the term w ∈ W
in the document d.

Following the ARTM approach, we introduce r additional
criteria Ri(Φ,Θ), i = 1, . . . , r, called regularizers. We would
like to maximize them separately, but the maximization of
their linear combination with nonnegative regularization co-
efficients ρi is technically more convenient:

R(Φ,Θ) =
r

∑

i=1

ρiRi(Φ,Θ) → max
Φ,Θ

.

Then we add a regularization term R(Φ,Θ) to the log-
likelihood L (Φ,Θ) and solve a constrained multicriteria op-
timization problem via scalarization of r + 1 criteria:

∑

d∈D

∑

w∈W

ndw ln p(w | d) +R(Φ,Θ) → max
Φ,Θ

; (1)

∑

w∈W

φwt = 1, φwt ≥ 0;
∑

t∈T

θtd = 1, θtd ≥ 0. (2)

It follows from Karush–Kuhn–Tucker conditions that the
local maximum (Φ,Θ) of the problem (1), (2) satisfies the
following system of equations with auxiliary variables inter-
preted as conditional probabilities ptdw = p(t | d,w) [33]:

ptdw = norm
t∈T

(

φwtθtd
)

; (3)

nwt =
∑

d∈D

ndwptdw;

ntd =
∑

w∈d

ndwptdw;

φwt = norm
w∈W

(

nwt + φwt
∂R

∂φwt

)

; (4)

θtd = norm
t∈T

(

ntd + θtd
∂R

∂θtd

)

; (5)



where the “norm” operator transforms a real vector (xt)t∈T

to a vector (x̃t)t∈T representing a discrete distribution:

x̃t = norm
t∈T

xt =
max{xt, 0}

∑

s∈T

max{xs, 0}
.

The system (3)–(5) can be solved by various numeri-
cal methods. In particular, the simple-iteration method is
a popular choice due to its simplicity. It has been proven
in [32] that it is equivalent to the EM-algorithm for PLSA
and LDA topic models.

Many Bayesian topic models can be considered as special
cases of ARTM with different regularizers [33, 32]. For ex-
ample, PLSA [12] corresponds to the absence of regulariza-
tion, R = 0. LDA [4] corresponds to the smoothing regu-
larizer, which minimizes the KL-divergences KL(α‖θd) and
KL(β‖φt) for fixed distributions β, α. Choosing uniform
distributions for β and α corresponds to symmetric Dirich-
let priors in Bayesian approach.

Additive regularization let users build topic models for
various applications simply by choosing a suitable combina-
tion of predefined regularizers from an extendable library.

For example, in [32] as many as five regularizers are com-
bined together to improve interpretability of the model. The
key idea is to split the set of topics T into two subsets:
T = S ⊔ B, and to configure regularizers in such a way that
domain-specific terms go into the set S, while commonly
used words land in the set B. Sparsity of domain topics
t ∈ S is promoted by two regularizers that maximize the
KL-divergences KL(α‖θd) and KL(β‖φt). Smoothness of
background topics t ∈ B is promoted by minimizing KL-
divergences KL(α‖θd) and KL(β‖φt). Finally, a covari-
ance regularizer is used to decrease the correlation between
columns in the Φ matrix, thus promoting the diversity of the
topics. The final combination of regularizers is as follows:

R(Φ,Θ) =− β0

∑

t∈S

∑

w∈W

βw lnφwt − α0

∑

d∈D

∑

t∈S

αt ln θtd

+ β1

∑

t∈B

∑

w∈W

βw lnφwt + α1

∑

d∈D

∑

t∈B

αt ln θtd

− γ
∑

t∈T

∑

s∈T\t

∑

w∈W

φwtφws,

where β0, α0, β1, α1, γ are regularization coefficients.
This combination was extended in [33] by a new regular-

izer that maximizes the KL-divergence KL
(

1
|T |

‖p(t)
)

, lead-

ing to a topic selection. Starting from an excessively high
number of topics the regularizer eliminates insignificant, du-
plicated, and linearly dependent topics [34]. Compared to
Hierarchical Dirichlet Process [29], the new regularizer re-
sults in a better topic selection algorithm: it gives a more
stable number of topics, takes less time to execute, and has
an ability to combine it with other topic models via additive
regularization.

An important subject for ARTMmodels is optimization of
the regularization coefficients ρi. According to Tikhonov’s
theory of ill-posed inverse problems [30], the regularization
coefficients must tend to zero with the number of iteration.
In practice, the regularization path is selected by adaptive
tuning of regularization coefficients [32, 33, 34]. This empir-
ical technique is based on visual control of multiple intrinsic
and extrinsic performance measures on each iteration.

3. MULTIMODAL ARTM
Now assume that a document can contain not only words,

but also terms of other modalities. Each modality is defined
by a finite set (vocabulary) of terms Wm, m = 1, . . . ,M .
The sets Wm are disjoint.

Examples of not-word modalities are: authors, class or
category labels, date-time stamps, references to/from other
documents/authors, named entities, objects found in the
images associated with the documents, users that read or
downloaded documents, advertising banners, etc.

As in the previous section, the collection is considered to
be a sample of i.i.d. triples (wi, di, ti) ∼ p(w, d, t) drawn
from the finite probability space W × D × T , but now
W = W 1 ⊔ · · · ⊔WM is a disjoint union of the vocabular-
ies across all modalities.

Following the idea of Correspondence LDA [3] and Depen-
dency LDA [25] we introduce a topic model p(w | d) for each
modality Wm, m = 1, . . . ,M :

p(w | d) =
∑

t∈T

p(w | t) p(t | d) =
∑

t∈T

φwtθtd, w ∈ Wm.

Stochastic matrices Φm =
(

φwt

)

Wm×T
of term probabilities

for the topics, if stacked vertically, form a W×T -matrix Φ.
To learn parameters Φm, Θ from the multimodal collec-

tion we maximize the log-likelihood for each m-th modality:

Lm(Φm,Θ) =
∑

d∈D

∑

w∈Wm

ndw ln p(w | d) → max
Φm,Θ

,

where ndw is the number of occurrences of the term w ∈ Wm

in the document d. Note that topic distributions of docu-
ments Θ are common for all modalities.

In ARTM we add a weighted sum of regularization cri-
teria R(Φ,Θ) to the log-likelihood and solve a constrained
multicriteria optimization problem:

M
∑

m=1

τmLm(Φm,Θ) +R(Φ,Θ) → max
Φ,Θ

; (6)

∑

w∈Wm

φwt = 1, φwt ≥ 0;
∑

t∈T

θtd = 1, θtd ≥ 0; (7)

where regularization coefficients τm are used to balance the
importance of different modalities. The local maximum
(Φ,Θ) of the problem (6), (7) satisfies the following system
of equations with auxiliary variables ptdw = p(t | d,w):

ptdw = norm
t∈T

(

φwtθtd
)

; (8)

nwt =
∑

d∈D

τm(w)ndwptdw;

ntd =
∑

w∈d

τm(w)ndwptdw;

φwt = norm
w∈Wm

(

nwt + φwt
∂R

∂φwt

)

; (9)

θtd = norm
t∈T

(

ntd + θtd
∂R

∂θtd

)

; (10)

where m(w) is the modality of the term w, w ∈ Wm(w).
The system of equations (8)–(10) follows from Karush–

Kuhn–Tucker conditions (see Appendix A for the proof).
For single modality (M = 1) it gives the regularized EM-

algorithm described in the previous section.



Many previous topic models for labeled documents can
be considered as specials cases of multimodal ARTM. Most
of them are based on LDA model and use Dirichlet pri-
ors, which correspond to smoothing regularization. From
ARTM perspective, there is little reason to always use only
the smoothing regularizer.

The following topic models exactly correspond to the mul-
timodal ARTM, up to the modality sense. A topic model
of document content and hypertext connectivity [6] intro-
duces a modality to represent hyperlinks between docu-
ments. The Conditionally Independent LDA, CI-LDA [21]
has the modality of named entities mentioned in a given
document. The Tag-LDA [27] has the modality of tags as a
special kind of words. The LDA-JS and LDA-post [9] has
the modality of publications cited in a given document; an
additional regularizer takes into account that cited docu-
ments are likely to share similar topics. Both models are
designed to estimate the strength of influence of cited pub-
lications. The Dependency LDA [25] has the modality of
document categories or class labels. The MultiLingual LDA,
ML-LDA [22] and the PolyLingual Topic Model, PLTM [19]
have L modalities for L different languages; parallel doc-
uments always share one identical topic distribution. The
BiLingual LDA, BiLDA [8] is also a multilanguage topic
model, but the number of modalities is restricted to two.

4. ONLINE PARALLEL EM-ALGORITHM
Like Online LDA [11] and Online PLSA [1] we split the

collection D into batches Db, b = 1, . . . , B, and organize EM
iterations so that each document vector θd is iterated until
convergence at a constant matrix Φ, see Algorithm 1 and 2.
The matrix Φ is updated rarely, after all documents from
the batch are processed. For a large collection the matrix Φ
often stabilizes after small initial part of the collection is
processed. Therefore a single pass through the collection
might be sufficient to learn a topic model. The second pass
may be needed for the initial part of the collection.

The online reorganization of the EM iterations is not nec-
essarily associated with Bayesian inference used in [11]. Dif-
ferent topic models, from PLSA to multimodal and regular-
ized models, can be learned by the above online EM algo-
rithm.

Algorithm 1 does not specify how often to synchronize
the matrix Φ at steps 5–8. It can be done after every batch
or less frequently (for instance if ∂R

∂φwt
takes long time to

evaluate). This flexibility is important for concurrent im-
plementation of the algorithm, where multiple batches are
processed in parallel. In this case synchronization can be
triggered when a fixed number of documents had been pro-
cessed since the last synchronization.

Each Db batch is stored on disk in a separate file, and
only a limited number of batches is loaded into the main
memory at any given time. The entire Θ matrix is also
never stored in the memory. As a result, the memory usage
stays constant regardless of the size of the collection.

To split collection into batches and process them concur-
rently is a common approach, introduced in AD-LDA algo-
rithm [20], and then further developed in PLDA [36] and
PLDA+ [17] algorithms. These algorithms require all con-
current workers to become idle before an update of the Φ
matrix. Such synchronization step adds a large overhead
in the online algorithm where Φ matrix is updated multiple
times on each iteration. An alternative architecture with-

Algorithm 1: Online EM for multimodal ARTM

Input: collection Db, discounting factor ρ ∈ (0, 1];
Output: matrix Φ;

1 initialize φwt for all w ∈ W and t ∈ T ;
2 nwt := 0, ñwt := 0 for all w ∈ W and t ∈ T ;
3 for all batches Db, b = 1, . . . , B
4 (ñwt) := (ñwt) + ProcessBatch(Db,Φ);
5 if (synchronize) then
6 nwt := ρnwt + ñdw for all w ∈ W and t ∈ T ;

7 φwt := norm
w∈Wm

(

nwt + φwt
∂R

∂φwt

)

for all w ∈ Wm,

m = 1, . . . ,M and t ∈ T ;
8 ñwt := 0 for all w ∈ W and t ∈ T ;

Algorithm 2: ProcessBatch(Db,Φ)

Input: batch Db, matrix Φ = (φwt);
Output: matrix (ñwt);

1 ñwt := 0 for all w ∈ W and t ∈ T ;
2 for all d ∈ Db

3 initialize θtd := 1
|T |

for all t ∈ T ;

4 repeat
5 ptdw := norm

t∈T

(

φwtθtd
)

for all w ∈ d and t ∈ T ;

6 ntd :=
∑

w∈d
τm(w)ndwptdw for all t ∈ T ;

7 θtd := norm
t∈T

(

ntd + θtd
∂R
∂θtd

)

for all t ∈ T ;

8 until θd converges;
9 ñwt := ñwt + τm(w)ndwptdw for all w ∈ d and t ∈ T ;

out the synchronization step is described in [28], however
it mostly targets a distributed cluster environment. In our
work we develop an efficient single-node architecture where
all workers benefit from the shared memory space.

To run multiple ProcessBatch in parallel the inputs and
outputs of this routine are stored in two separate in-memory
queues, locked for push and pop operations with spin locks.
This approach does not add any noticeable synchronization
overhead because both queues only store smart pointers to
the actual data objects, so push and pop operations does
not involve copying or relocating objects in the memory.

Smart pointers are also essential for lifecycle of the Φ ma-
trix. This matrix is read by all processors threads, and can
be written at any time by the merger thread. To update Φ
without pausing all processor threads we keep two copies —
an active Φ and a background Φ matrices. The active ma-
trix is read-only, and is used by the processor threads. The
background matrix is being built in a background by the
merger thread at steps 6 and 7 of Algorithm 1, and once
it is ready merger thread marks it as active. Before pro-
cessing a new batch the processor thread gets the current
active matrix from the merger thread. This object is passed
via shared smart pointer to ensure that processor thread
can keep ownership of its Φ matrix until the batch is fully
processed. As a result, all processor threads keep running
concurrently with the update of Φ matrix.

All processor threads share the same Φ matrix, which
means that memory usage stays at constant level regard-
less of how many cores are used for computation. Using
memory for two copies of the Φ matrix in our opinion gives



Figure 1: Diagram of parallelization components

a reasonable usage balance between memory and CPU re-
sources. An alternative solution with only one Φ matrix is
also possible, but it would require a heavy usage of atomic
CPU instructions. Such operations are very efficient, but
still come at a considerable synchronization cost,1 and us-
ing them for all reads and writes of the Φ matrix would cause
a significant performance degradation for merger and pro-
cessor threads. Besides, an arbitrary overlap between reads
and writes of the Φ matrix eliminates any possibility of pro-
ducing a deterministic result. The design with two copies
of the Φ matrix gives much more control over this and in
certain cases allows the algorithm to behave in a fully de-
terministic way.

The design with two Φ matrices only supports a single
merger thread, and we believe it should handle all ñwt up-
dates coming from many threads. This is a reasonable
assumption because merging at step 6 takes only about
O(|W | · |T |) operations to execute, while ProcessBatch takes
O(n|T |I) operations, where n is the number of non-zero en-
tries in the batch, I is the average number of inner itera-
tions in ProcessBatch routine. The ratio n/|W | is typically
from 100 to 1000 (based on datasets in UCI Bag-Of-Words
repository), and I is 10 . . . 20, so the ratio safely exceeds the
expected number of cores (up to 32 physical CPU cores in
modern workstations, and even 60 cores of the Intel Xeon
Phi co-processors).

We use dense single-precision matrices to represent Φ
and Θ. Together with the Φ matrix we store a global dic-
tionary of all terms w ∈ W . This dictionary is implemented
as std::unordered map that maps a string representation of
w ∈ W into its integer index in the Φ matrix. This dic-
tionary can be extended automatically as more and more
batches came through the system. To achieve this each
batch Db contains a local dictionary Wb, listing all terms
that occur in the batch. The ndw elements of the batch
are stored as a sparse CSR matrix (Compressed Sparse Raw
format), where each row correspond to a document d ∈ Db,
and terms w run over a local batch dictionary Wb.

For performance reasons Φ matrix is stored in column-
major order, and Θ in row-major order. This layout ensures
that

∑

t
φwtθtd sum runs on contiguous memory blocks. In

both matrices all values smaller than 10−16 are always re-
placed with zero to avoid performance issues with denormal-
ized numbers.2

1http://stackoverflow.com/questions/2538070/
atomic-operation-cost
2http://en.wikipedia.org/wiki/Denormal_number#
Performance_issues

The parallel online EM-algorithm for multimodal ARTM
is implemented in BigARTM open source project available
from http://bigartm.org under the New BSD License.
The core of the library is written in C++ and is exposed
via two equally rich APIs for C++ and Python. The library
is cross-platform and can be built for Linux, Windows and
OS X in both 32 and 64 bit configuration.

5. EXPERIMENTS

Runtime performance.
In first experiment we evaluate the runtime performance

and intrinsic quality of BigARTM against two popular soft-
ware packages — Gensim [24] and Vowpal Wabbit.3

All three libraries (VW.LDA, Gensim and BigARTM)
work out-of-core, e. g. they are designed to process data
that is too large to fit into a computer’s main memory
at one time. This allowed us to benchmark on a fairly
large collection — 3.7 million articles from the English
Wikipedia.4 The conversion to bag-of-words was done
with gensim.make wikicorpus script,5 which excludes all non-
article pages (such as category, file, template, user pages,
etc), and also pages that contain less than 50 words. The dic-
tionary is formed by all words that occur in at least 20 docu-
ments, but no more than in 10% documents in the collection.
The resulting dictionary was caped at |W | = 100 000 most
frequent words. Perplexity is used as an intrinsic quality
measure:

P(D, p) = exp

(

−
1

n

∑

d∈D

∑

w∈d

ndw ln p(w | d)

)

. (11)

Vowpal Wabbit (VW) is a library of online algorithms that
cover a wide range of machine learning problems. For topic
modeling VW has the VW.LDA algorithm, based on the
Online Variational Bayes LDA [11]. VW.LDA is neither
multi-core nor distributed, but an effective single-threaded
implementation in C++ made it one of the fastest tools for
topic modeling.

Gensim library specifically targets the area of topic mod-
eling and matrix factorization. It has two LDA imple-
mentations — LdaModel and LdaMulticore, both based on
the same algorithm as VW.LDA (Online Variational Bayes
LDA [11]). Gensim is entirely written in Python. Its high
performance is achieved through the usage of NumPy li-
brary, built over low-level BLAS libraries (such as Intel
MKL, ATLAS, or OpenBLAS). In LdaModel all batches are
processed sequentially, and the concurrency happens entirely
within NumPy. In LdaMulticore the workflow is similar
to BigARTM — several batches are processed concurrently,
and there is a single aggregation thread that asynchronously
merges the results.

Table 1 compares the performance of VW.LDA, Gensim
LdaModel and LdaMulticore (v0.10.3 under Python 2.7),
and BigARTM, using Amazon EC2 c3.8xlarge instance
(Intel-based CPU with 16 physical cores and hyper-
threading).

Each run performs one pass over the Wikipedia corpus
and produces a model with |T | = 100 topics. The collection

3https://github.com/JohnLangford/vowpal_wabbit/
4http://dumps.wikimedia.org/enwiki/20141208/
5https://github.com/piskvorky/gensim/tree/develop/
gensim/scripts/



Table 1: The comparison of BigARTM with
VW.LDA and Gensim; train is the time for model
training, inference is the time for calculation of θd of
100 000 held-out documents, perplexity is calculated
according to (11) on held-out documents.

library procs train inference perplexity
BigARTM 1 35 min 72 sec 4000
LdaModel 1 369 min 395 sec 4161
VW.LDA 1 73 min 120 sec 4108
BigARTM 4 9 min 20 sec 4061
LdaMulticore 4 60 min 222 sec 4111
BigARTM 8 4.5 min 14 sec 4304
LdaMulticore 8 57 min 224 sec 4455

Table 2: Comparison of LDA and BigARTM mod-
els: P10k, P100k — hold-out perplexity on 10K and
100K documents sets, SΦ, SΘ — sparsity of Φ and Θ
matrices (in %), Ks, Kp, Kc — average topic kernel
size, purity and contrast respectively.

Model P10k P100k SΦ SΘ Ks Kp Kc

LDA 3436 3801 0.0 0.0 873 0.533 0.507
ARTM 3577 3947 96.3 80.9 1079 0.785 0.731

was split into batches with 10K documents each (chunksize
in Gensim, minibatch in VW.LDA). The update rule in
online algorithm used a discounting factor ρ = (b+ τ0)

−0.5,
where b is the number of batches processed so far, and τ0
is a constant offset parameter introduced in [11], in our ex-
periment τ0 = 64. Updates were performed after each batch
in non-parallel runs, and after P batches when running in
P threads. To make a fair comparison we have configured
BigARTM to only use the smoothing regularizers, which
is equivalent to the LDA model. LDA priors were fixed as
α = 0.1, β = 0.1 for all models.

Combination of regularizers.
All regularizers built-in BigARTM library can be used in

any combination. In the following experiment we combine
regularizers described in section 2: sparsing of φt, spars-
ing of θd, and pairwise decorrelation of φt distributions.
This combination improves several quality measures with-
out significant loss of perplexity for the offline implementa-
tion of ARTM [33]. The goal of our experiment is to show
that the same remains true for the online implementation in
BigARTM.

We use the following built-in performance measures: the
hold-out perplexity, the sparsity of Φ and Θ matrices, and
several characteristics (size, purity, and contrast) of the
topic’s lexical kernels, averaged across all topics.

Table 2 compares the results of additive combination of
regularizers (ARTM) and the usual LDA model.

Figure 2 presents performance measures as functions of
the number of processed documents. The first chart shows
perplexity and sparsity of Φ, Θ matrices, and the second
chart shows average lexical kernel measures.

Text classification.
Support vector machine (SVM) based on token frequen-

cies is known to be one of the best methods for text classifi-
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Figure 2: Comparison of LDA (thin) and ARTM
(bold) models. The number of processed documents
is shown along the X axis.

cation. However, according to [25] topic models demonstrate
even better quality in case of unbalanced interdependent and
intersecting classes.

Our experiment aims to prove that multimodal regu-
larized topic models in BigARTM are as good as Depen-
dency LDA from [25]. Dependency LDA is in fact a mul-
timodal topic model with two modalities: words and class
labels.

The EUR-lex collection contains about 20K documents
split into train and test sets to provide the reproducibility
of the results [25]. The original size of the dictionary is over
190K tokens. Preprocessing from [25] removes all tokens
encountered less than 20 times, and reduces the dictionary to
about 20K tokens. Class labels, encountered only once, are
also removed to result in about 3250 classes. Each document
might belong to several classes.

For both Dependency LDA and ARTM the label regular-
ization [25] was used. The quality measures in our experi-
ment are as follows: AUCPR — the area under the precision-
recall curve; AUC — the area under ROC-curve; OneErr —
the ratio of documents with the most probable label not
from the correct set; IsErr — the ratio of documents with
not ideal classification.

The results are provided in Table 3. ARTM performs
better than both Dependency LDA and SVM by the three
measures out of four. It is interesting to note that while the
number of topics increases up to 15 000, ARTM provides
better classification quality, while the optimal number of
topics for Dependency LDA is 200.

Cross-language search.
The following experiment shows that multimodal topic

model may be used as multilingual one, with languages of



Table 3: Multimodal ARTM, Dependency LDA and
SVM classification models. The best results are in
bold. Topt is the optimal number of topics.

Topt AUCPR ↑ AUC↑ OneErr↓ IsErr↓
ARTM 15 000 0.529 0.980 27.1 94.2
DLDA 200 0.492 0.982 32.0 97.2
SVM – 0.435 0.975 31.6 98.1

Table 4: Cross-language search precision for differ-
ent models. The best value in each column is bolded.

Number of topics T
Model 50 100 200 500
PLTM [19] 0.812 – – –
JPLSA [23] 0.989 – – –
PLTM-He [18] 0.943 0.985 0.994 0.993
PLTM-He kd-trees [18] 0.949 0.989 0.995 0.996
BigARTM 0.972 0.990 0.996 0.997

parallel texts treated as modalities. The experiment was
held on the EuroParl collection [15] of European Parliament
Proceedings. Proceedings in English and Spanish were cho-
sen, as these languages are often used for multilingual topic
model comparison. As in [19, 23, 18], a single document is
a speech of one speaker at one session.

We use precision to measure quality of the cross-language
search. The precision is defined as the fraction of query
documents q closest to their own translation t, according to
Hellinger distance:

H2(d, q) =
1

2

∑

t∈T

(
√

p(t | d)−
√

p(t | q)
)2
.

Training set includes proceedings from 1996 to 1999, and
from 2001 to 2002, test set includes proceedings of 2000 and
the first 9 months of 2003. The same partitioning is used
in [23] and [18]. Moreover, as in [19, 18], the test comprised
documents of the length more or equal than 100 words. The
total number of documents is 67379 in the training set, and
16068 in the test set. Built-in capability of BigARTM to
filter the dictionary was used: all rare words, that appear
in less than 20 documents, and stop-words, that appear in
more than 50% of documents, were discarded.

Table 4 shows the comparison of models from [19, 23,
18] and our ARTM. For the first two models, the authors
provide search precision for 50 topics only. ARTM performs
slightly worse than JPLSA, but we note, that one iteration of
BigARTM takes 30 seconds for 50 topics and 40 seconds for
100 topics, while one iteration of JPLSA takes 31 minutes.
ARTM performs better if compared with models from [18].

Recommending articles of collective blog.
Here we describe how multimodal topic modeling can be

used for recommending articles in a collective blog. Col-
lective blog is an on-line platform where users can pub-
lish articles and respond to the articles of other authors.
To make recommendations we add user’s positive feedback
to the article as a modality. For the experiment we used
dataset of about 130K articles with user feedback from
http://habrahabr.ru — the most popular IT-oriented so-

Table 5: The quality of recommendations for base-
line matrix factorization model, unimodal model
with only modality of user likes, and two multimodal
models incorporating words and user-specified data
(tags and categories).

Model Recall@5 Recall@10 Recall@20
baseline [13] 0.591 0.652 0.678

likes 0.62 0.59 0.65
likes + words 0.79 0.64 0.68
all modalities 0.80 0.71 0.69

no regularization 0.79 0.71 0.68

cial blogging platform in Russia. The articles from our
dataset have five modalities: words from text, users who
liked articles, authors, tags and categories (hubs) specified
by users.

To construct list of recommended articles to the user u we
estimate his topic distribution p(t |u) and rank documents
according to p(d | u). To assess the quality of recommenda-
tions we split the set of user–article interactions (likes) on
two disjoint subsets in proportion 1 : 1, the former subset is
used for estimating user topics and the latter subset contains
hold-out preferences used to compute Recall@k metric (the
proportion of liked articles among top k recommendations).
As a baseline recommendation model we used weighted reg-
ularized matrix factorization [13] based on user likes. This
approach is commonly used in recommender systems.

Table 5 presents the results of a comparison of three mod-
els. Performance of the topic models is comparable or better
than baseline. Additional modalities improves recommen-
dation ranking significantly. The combination of all modali-
ties with regularizers of sparsity and decorrelation does not
degrade the quality of recommendation but provides much
more sparse and interpretable model. It is well known that
factors of Weighted Matrix Factorization are dense and their
components do not correspond to human-sensible topics.
By using regularizers we could make interpretability of fac-
tors even better. The interpretability of the user profile
p(t |u) enables new ways of using recommendation model.

6. CONCLUSIONS
We have presented an Additive Regularization of Topic

Models (ARTM), a powerful non-Bayesian framework for
topic modeling. ARTM facilitates the development of topic
models and allows merging models together in arbitrary
combinations. Combining multiple modalities with multi-
ple regularization criteria covers dozens of models previously
studied in the Bayesian settings.

BigARTM is an open source project for parallel online
multimodal regularized topic modeling of large text collec-
tions. Its implementation is faster than existing popular
topic modeling tools. BigARTM provides high flexibility for
various applications due to multimodality and additive com-
binations of regularizers. BigARTM has a built-in library of
regularizers and quality measures.

BigARTM architecture has a rich potential. In future ver-
sion it will be extended to run on a distributed cluster en-
vironment, improve performance and reduce memory usage
for sparse topic models, implement APIs for Java and C#.
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Appendix A

Consider the system of equations (8)–(10).
A topic t is called regular for a modality m if

nwt + φwt
∂R

∂φwt

> 0

for at least one term w ∈ Wm. If the reverse inequality holds
for all w ∈ Wm then the topic t is called irregular ; in this
case the t-th vector-column in the matrix Φm equals zero
and can not represent a discrete distribution. This means
that the topic t for the modality m must be excluded from
the model. This mechanism can be used to determine the
number of topics.

A document d is called regular if

ntd + θtd
∂R

∂θtd
> 0

for at least one topic t ∈ T . If the reverse inequality holds
for all t ∈ T then the document d is called irregular ; in this
case the d-th vector-column in the matrix Θ equals zero
and can not represent a discrete distribution. This means
that document d must be excluded from the model. For
example, the document may be too short or irrelevant for
the collection.

Theorem 1. If the function R(Φ,Θ) is continuously dif-
ferentiable and (Φ,Θ) is the local maximum of the prob-
lem (6), (7) then for any regular topic t and any regular
document d the system of equations (8)–(10) holds.

Proof. First, we introduce n′
dw = τm(w)ndw and rewrite

(6) in a form of unimodal optimization problem (1):
∑

d∈D

∑

w∈W

n′
dw ln p(w | d) +R(Φ,Θ) → max

Φ,Θ
.

For the local minimum Φ,Θ of the problem (6), (7) the
Karush–Kuhn–Tucker (KKT) conditions give:

∑

d∈D

n′
dw

θtd
p(w | d)

+
∂R

∂φwt

= λt − λwt; (12)

λwt ≥ 0; λwtφwt = 0;
∑

w∈W

n′
dw

φwt

p(w | d)
+

∂R

∂θtd
= µd − µtd; (13)

µtd ≥ 0; µtdθtd = 0;

where λt and µd are KKT multipliers for normalization con-
straints, λwt and µtd are KKT multipliers for nonnegativity
constraints.

Let us multiply both sides of equation (12) by φwt, both
sides of equation (13) by θtd, and reveal the auxiliary vari-
able ptdw from (8) in the left-hand side of both equations.
Then let us substitute the sum over d by nwt auxiliary vari-
able, and the sum over w by ntd auxiliary variable:

φwtλt =
∑

d∈D

n′
dw

φwtθtd
p(w | d)

+ φwt
∂R

∂φwt

= nwt + φwt
∂R

∂φwt

;

θtdµd =
∑

w∈W

n′
dw

φwtθtd
p(w | d)

+ θtd
∂R

∂θtd
= ntd + θtd

∂R

∂θtd
.

An assumption that λt ≤ 0 contradicts the regularity con-
dition for the (t,m) pair. Then λt > 0. Either φwt = 0 or
both sides of the first equation are positive. Combining these
two cases in one formula, we write:

φwtλt = max

{

nwt + φwt
∂R

∂φwt

, 0

}

. (14)

Analogously, an assumption that µd ≤ 0 contradicts the reg-
ularity condition for the document d. Then µd > 0. Either
θtd = 0 or both sides of the second equation are positive,
consequently,

θtdµd = max

{

ntd + θtd
∂R

∂θtd
, 0

}

. (15)

Let us sum both sides of the first equation over w ∈ Wm,
then both sides of the second equation over t ∈ T :

λt =
∑

w∈Wm

max

{

nwt + φwt
∂R

∂φwt

, 0

}

; (16)

µd =
∑

t∈T

max

{

ntd + θtd
∂R

∂θtd
, 0

}

. (17)

Finally, we obtain (9) and (10) by expressing φwt from (14)
and (16), then by expressing θtd from (15) and (17).


