Тест 1 по курсу «Байесовский выбор моделей»

Вариант 1

Задача 1 (5 баллов). Что такое квантиль распределения? Вычислить пятипроцентную квантиль распределения U[-2, 2].

Задача 2 (10 баллов). Пусть ξ – некоторая одномерная случайная величина, а $F_{\xi}(\cdot)$ – ее функция распределения. Найти распределение случайной величины $\eta = F_{\xi}(\xi)$ и вычислить $\mathbb{D}\eta$.

Задача 3 (10 баллов). Что такое FWER при множественной проверке гипотез? Доказать, что поправка Бонферрони при исходном одногипотезном тестировании на уровне значимости α позволяет контролировать FWER на уровне α .

Задача 4 (10 баллов). Пусть есть НОР (i.i.d.) выборка $x_1, \ldots, x_n, n > 100$ из нормального распределения со средним m и неизвестной дисперсией σ . На уровне значимости α проверить гипотезу H_0 о том, что m=0. Выписать критическую область и сосчитать мощность критерия W в зависимости от истинных m и σ .

Вариант 2

Задача 1 (5 баллов). Что такое мощность статистического критерия и ошибка первого рода?

Задача 2 (10 баллов). Пусть ξ – одномерная случайная величина из U(0, 1), а $F_N(\cdot)$ – функция распределения стандартного нормального распределения N(0, 1). Найти распределение случайной величины $\eta = F_N^{-1}(\xi)$ и вычислить $\mathbb{D}\eta$.

Задача 3 (10 баллов). Что такое FDR при множественной проверке гипотез? Пусть тестируется 5 гипотез с положительной регрессионной зависимостью на уровне значимости $\alpha=0.05$. Достигаемые уровни значимости: 0.2, 0.02, 0.025, 0.04, 0.3. Применить поправку Бенджамини-Хохберга и получить исправленные (adjusted) достигаемые уровни значимости и набор гипотез, отвергаемых для FDR $\leq \alpha$.

Задача 4 (10 баллов). Пусть есть НОР (i.i.d.) выборка $x_1, \ldots, x_n, n > 100$ из нормального распределения со средним m и неизвестной дисперсией σ . На уровне значимости α проверить гипотезу H_0 о том, что m=0. Выписать критическую область и сосчитать мощность критерия W в зависимости от истинных m и σ .