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Chapter 1

Introduction

With rapidly growing computational resources, the number of ambitious problems that require

processing capacities exceeding available ones is growing. So, there is always the need to develop

new tools that can partially lift the computational burden. Applied physics is one of many domains

sensible to the amount of accessible computing power. Often, a numerical solution is the only

possible way to address contemporary scientific or engineering problems. Among them, one should

highlight the class of problems described with partial differential equations (PDEs). Modeling

processes in nature boils down to solving PDEs. Just for instance, such processes can be:

• flow in heterogeneous porous media

• seismic wave propagation

• turbulent transport in high Reynolds number flows

• tensile failure in fiber­reinforced composites.

Although, it is a well­studied issue: there exist many methods and libraries that are capable of cast­

ing PDEs; there are also multiscale problems which are difficult to deal with using a conventional

approach (precisely due to computational cost). To this end, multiscale methods emerge. They are

able to capture the multiscale structure and fastly build an approximation of the solution without

a great sacrifice in the accuracy. In this work, we are focusing on the popular representative of

multiscale methods ­ the Generalized Multiscale Finite Element Method (GMsFEM)[1]. To solve

the underlying PDE of the problem, its authors propose to precalculate offline space by solving

many local problems on a fine mesh. At the online stage, one can reuse the functions from of­

fline calculations to construct multiscale functions and solve the PDE in the weak formulation as

it goes in the regular finite element setting. A particular interest in GMsFEM is connected with its

effectiveness in the modeling of two­phase flow and other problems that require a large number of

forward simulations:

∂tu+ div(κ(x, u)∇u) = f

div(κ(x, u)∇u) = f
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Annotation: Simulation of time­dependent problems (1st eq.) and solving with Picard iteration (2nd eq.)

At the time this paper is written, there are few GitHub ­repositories demonstrating method’s appli­

cations on a specific problem and no usable libraries. What about commercial solvers ­ they exist

but are limited in their functionality. It appears that they are not suitable for the problems we are

interested in. In this way, we get to the main target of the current work: the development of an

open­source hydrodynamic simulator on the base of GMsFEM. To this end, the objectives are the

following:

• Study available open­source platforms for solving PDEs with FEM

• Implement the baseline method for solving multiscale problems

• Parallelize the algorithm with existing frameworks
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Chapter 2

Background

2.1 Finite Element Method

The finite element method (FEM) is the most widely used method for solving PDEs from applied

physics. Its popularity is due to the deep theoretical background and can be applied to a wide range

of problems:

• heat transfer

• fluid flow

• structural analysis

• mass transport

• electromagnetic field distribution

The main concept of FEM is that any continuous variable (temperature, pressure, displacement) in

some domain can be approximated with a discrete model built on the set of piecewise continuous

functions, locally supported on the corresponding elements from a finite collection of subdomains.

According to this idea, we can get to the following algorithm:

1. Generate mesh with a finite number of nodes

2. Values of the target variable are unknown and are to be determined

3. The domain under examination is split into a finite number of subdomains (elements) that

have common nodes.

4. The continuous target variable is approximated on each element with polynomial determined

by the nodal values (degrees of freedom ­ dofs). Coefficients of polynomials are chosen in

the way that the target variable is continuous on the boundary of elements.

For a better understanding, let us refer to the mathematical notation. Consider Poisson’s equation

10



−∆u = f (2.1)

on a domain Ω ⊂ Rd with essential conditions (please, refer to table 2.1 for naming conventions of

condition types at the end of the subsection)

For any test function v integrable in the domain, with square­integrable derivatives Ω, and is zero

on the boundary ∂Ω (easy to write v ∈ H1
0 (Ω), H1

0 ­ Sobolev space), the following holds:∫
Ω

−∆u vdx =

∫
Ω

∇u∇vdx = a(u, v)

Here, integration by parts has been applied. Form a is called the stiffness form. The integration of

a test function with the right­hand side gives the load vector l(v) =
∫
Ω
fvdx

In defined components, we can argue that the weak solution to equation 2.1 is characterized by:

u ∈ V such that a(u, v) = l(v) ∀v ∈ V

where V = {v ∈ L2(0, 1) : a(v, v) <∞ & v(∂Ω) = 0}
An interested reader can find the proof of existence and uniqueness of the solution in the literature

devoted to FEM’s overview (e.g., Hoang et al. (2019) [2])

To finish the transition from PDEs to algebraic equations (in stationary case) or ordinary differential

equations (ODEs ­ in case of time­dependent problems), we decompose the solution (in fact, the

approximation to it) into a sum of basis functions of scarce function space V̂ . It is scarce in the

sense that it is finite: contains a finite number of simple functions ­ ϕi, i = 1, n

ũ = uiϕi

If, as test function, we take ϕi from the same basis we used for representing the solution approxi­

mation (or φi from similar but different finite space), we will get the linear system Au = b.

A = [a(ϕi, ϕj)]i,j, i, j = 1, n; b = (l(ϕ1), . . . , l(ϕn))
⊤

u = (u1, . . . , un)
⊤

The choice of basis functions affects the computational cost of the algorithm and the accuracy of

the approximation. Usually, ϕi­s are locally supported functions, defined on the mesh elements ­

this makes stiffness matrix A sparse, directly reducing the number of entries to be calculated and

accelerating the work of a direct solver or iterative solver, depending on the linear system. On how

to successfully choose basis functions and make discretization of a computing domain, one may
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have a look at the materials [3, 4].

The tables below present the naming conventions used throughout the paper

Boundary Condition Variational Name Proper Name
u(x) = 0 essential Dirichlet
u′(x) = 0 natural Neumann

Table 2.1: Naming conventions
for two types of boundary conditions (Brenner, 1994[5])

K coarse element
ω neighborhood
nK # of K­s along one of dimensions
nω = nK − 1 # of ω­s along one of dimensions
Nω total # of ω­s
Nκ or Nµ # of hyperparameter values µj

ND
ℓ # of fine elements (FE) in D : ω, Ω, K

nD
ℓ # of FE in D along one of dim­s; D : ω, Ω, K
V some function space (FS)
V ω or V (ω) FS over a mesh defined on ω
Vh FE FS over a mesh with fineness h
Vtag FS of tag: snap, off, on
Ntag dim(Vtag) ; tag: off, on

Table 2.2: List of symbols
used throughout the paper

2.2 Baseline method ­ GMsFEM

To deal with multiscale problems, one needs to make a tiny mesh to solve them with FEM. A

large number of cells can be a reason to think of other methods which account for multiple scales

and are less demanding in resources. GMsFEM [1] is an example of such. The method starts

with two­level discretization: along with a coarse mesh TH , one also constructs a fine mesh Th.

They both cover just a subregion of the domain of interest. After finishing computations on one

subdomain, the solver proceeds with the next if the pipeline is serial. Otherwise, it can be viewed as

many multiscale solvers working almost independently. only its subregions. Therefore, the instant

computational workload in GMsFEM is determined by the partition size of the coarse mesh. To

understand the method’s concept, let us refer to a concrete example:

div(κ(x, µ)∇u(x)) = f(x) in Ω (2.2)
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Here, u is known on ∂Ω, and µ is a parameter (in the permeability coefficient in case of porous

media applications) of multiscale nature, i.e., has high variations in the domain. Assume, we know

the limits that confine the range of values ofµ, so that it can be discretizedµj, j = 1, Nµ. We define

a neighborhood ωi as a union of (four ­ depends on the discretization) adjacent coarse elements that

share the same vertex on the coarse mesh (see fig. 2.1).

ωi =
∪{

Kj ∈ T H | xi ∈ Kj

}
Having done these steps, we can start building a snapshot space V ωi

snap ­ a space of functions repre­

senting a response of the simulated environment to different input parameters.

Figure 2.1: Two­level mesh representation
(left): coarse mesh ­ a checkerboard pattern, fine mesh ­ ripple which can be seen on a separate
coarse element (the image is cropped from [6]); (right): coarse mesh structure (cropped from [7])

2.2.1 Snapshot Space

Option 1.

For each neighborhood wi and parameter value µj , we consider the homogeneous version of the

original problem 2.2:

−div(κ(x, µj)∇ψ(i), snap
k,j ) = 0 in ωi, (2.3)

ψ
(i), snap
k,j = δk,j on ∂ωi

To find the kth snapshot function ψ(i), snap
k,j ∈ V ωi

snap, we put discrete delta function at each point of

the fine mesh on the boundary of a neighborhood and solve the problem 2.3.

δk,j(x
(i)
l ) =

1, l = k,

0, l ̸= k
x
(i)
l on ∂ωi

∩
Th

13



Option 2.

Alternatively, we can take V ωi
snap as the function space V

ωi
h we would use to solve 2.3 on the fine

mesh within a neighborhood wi with FEM. Since such snapshot space ”contains” no information

about the equation parameters and bigger than the one resulting if following the first option, one

may want to apply the model reduction procedure used for obtaining online space, while iterating

over all µj ­ see [8].

2.2.2 Offline Space

We perform a spectral decomposition of the space of snapshots V ωi
snap to obtain an offline space V

ωi
off .

More precisely, we consider the generalized eigenvalue problem in V ωi
snap (which is the discrete

version of the problem of finding eigenfunctions of div(κ∇•)­operator):

MΨk = λkSΨk (2.4)

We re­numerate functions ψ(i), snap
k,j using a single index: k, j → m, so the mass and stiffness ma­

trices,M and S, are as follows:

Mmn =

∫
ωi

κ̄ ψ(i), snap
m ψ(i), snap

n

Smn =

∫
ωi

κ̄ ∇ψ(i), snap
m ∇ψ(i), snap

n

Here, κ̄(x) = tjκ(x, µj) is averaged over µ (with some prescribed positive weights).

We then choose Noff eigenvectors corresponding to the dominant eigenvalues. Their coordinates

will determine linear combinations

ψk = Ψklψ
l (2.5)

that constitute an offline space V ωi
off . Moderate compressions allow us to reuse offline functions

effectively during repeating calculations.

It is worthwhile noting that if we solve 2.3 with FEM, then we know the dofs R(i), snap of snapshot

functions ψ(i), snap
p in the fine­grid basis Vh = {ϕ(i)

q } supported within ωi:

ψ snap
p = R snap

pq ϕq

In this way, we can write:

M = R snap M(κ̄) (R snap)⊤

S = R snap S(κ̄) (R snap)⊤

14



M̄(κ̄) and S̄(κ̄) are mass and stiffness band matrices of V ωi
h . The argument in parantheses specifies

the permeability used for matrix assembling.

M(κ)mn =

∫
ωi

κ ϕm ϕn

S(κ)mn =

∫
ωi

κ ∇ϕm∇ϕn

2.2.3 Online Space

As for online space, we repeat the same model reduction procedure with a target permeability

coefficient (the one for which we want to solve the equation ­ it can be fixed or depend on time or

iteration step) instead of averaged.

Again, we extract the subspace of the given function space ­ now it is an offline space V ωi
off , ­ by

solving 2.4 with the following matrices:

Mmn =

∫
ωi

κ ψ off
m ψ off

n

Smn =

∫
ωi

κ ∇ψ off
m ∇ψ off

n

The resulting Non eigenvectors corresponding to the dominant eigenvalues define the basis of an

online space V ωi
on by the formula 2.5.

A more efficient way to assemble matrices is to leverage the sparsity of matrices in the space of

fine­grid functions within ωi:

M = R off M(κ)
(
R off)⊤

S = R off S(κ)
(
R off)⊤

where R off = Ψ snapR snap. Thus, for the dofs of online functions, we can write:

R on = Ψ offR off = Ψ offΨ snapR snap

2.2.4 Global Coupling

In order to obtain a conforming basis [9], we need to multiply online functions by a partition of

unity functions [10, 11]. The latter satisfy to:

15



−div(κ∇χ(i)) = 0 in all K ⊂ ωi

χ(i) = gi on ∂K \ ∂ωi(∀K ⊂ ωi)

χ(i) = 0 on ∂ωi

where gi is a continuous linear function on all edges of ∂K

So, the multiscale basis is

Vms = spani,j
(
χ(i) ψj

(i), on
)

And the corresponding dofs are

Rms
pk = χkR

on
pk

We find the approximation in the form:

ũ = ui ψms
i ψms

i ∈ Vms (2.6)

In a Galerkin formulation (a scheme in the weak formulation [12]), we write the stiffness matrix:

Aip,jq =

∫
Ω

κ∇ψ(i),ms
p ∇ψ(j),ms

q =

∫
ωi

∪
ωj

κ∇
(
R

(i),ms
pk ϕ(i),k

)
∇

(
R

(j),ms
qk′ ϕ(j),k′

)
= R

(i),ms
pk R

(j),ms
qk′

∫
ωi

∪
ωj

κ∇ϕ(i)
k ∇ϕ(j)

k′ = R
(i),ms
pk R

(j),ms
qk′ A

(i,j)
kk′

Define the set of relative distances to the ’top­right’ adjacent neighborhoods 1

P = {1, nω − 1, nω, nω + 1} and the set of pairs I =
{
i, j | i, j = 1, Nω : |i− j| ∈ P

}
.

If ωi

∩
ωj = ∅, what is the case when |i− j| ̸∈ P

∪
{0}, then A

(i,j)
kk′ = 0 and, thus, Aip,jq = 0

Consider diagonal blocks of A:

Ai:,i: = R(i),msA(i)
(
R(i),ms)⊤ 2

Here, A
(i)
kk′ =

∫
ωi

κ∇ϕk∇ϕk′ , k, k′ = 1, dim[V ωi
h ].

All the integrand functions relate to the integration domain 3.

As for off­diagonal blocks, (i, j) ∈ I , we define the form below:

A
(i,j), trunc
mm′ =

∫
ωi

∩
ωj

κ∇ϕm∇ϕm′ m,m′ = 1, dim[Vh(ωi

∩
ωj)]

1{j − i | j > i : ωi

∩
ωj ̸= ∅}

2 colon in place of tensor’s index means a full slice in the latter’s dimension
3 parameters are restricted to the domain, basis functions are from the function space defined on this domain
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Again, the same implicit rule applies 3.

A
(i,j)
kk′ and A(i,j), trunc

mm′ share the same non­zero entries. However, the former contains basis functions

from different function spaces, namely V ωi
h and V ωj

h . Typically, existing software can assemble

mass or stiffness matrices fast if a single basis is used, and not the other way around. To this end,

one may favor coupling via A(i,j), trunc
mm′ :

1. get indices of dofs of Vh(ωi

∩
ωj)’s basis functions in the spaces V ωi

h and V ωj

h : Λi,Λj .

2. find necessary permutations σi, σj to restore the order of the sliced dofs as it should be in the

space Vh(ωi

∩
ωj)

3. ∀(i, j) ∈ I, Ai:,j: = R
(i),ms
:σi(Λi)

A
(i,j),
trunc

(
R

(j),ms
:σj(Λj)

)⊤
2

After assembling diagonal blocks and blocks from index set I , we get the upper­right ’half’/triangle

of the global matrix A filled. Since it is symmetric, we finish coupling by copying and transposing

the entries to bottom­left positions.

The rest is easy ­ we compute the load vector:

bip =

∫
Ω

f ψ(i),ms
p =

∫
ωi

f R
(i),ms
pk ϕ(i),k

bi: = R(i),ms b(i), b
(i)
k =

∫
ωi

f ϕ
(i)
k

Depending on the size, the system Au = b can be solved with a direct or iterative solver. The

substitution of the resulting dofs u in 2.6 gives an accurate approximation to the multiscale problem

solution 2.3.
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Chapter 3

Methodology and Experimental Setup

3.1 Software

In this work, for solving PDEs on a fine mesh, we use an open­source platform, FEniCS [13]. Also,

we consider the results it gives for a multiscale problem (wherever it is possible to obtain them

with FEM not crashing down because of the overload) as a benchmark. The rest of the algorithm is

written with Python: matrix­vector operations with NumPy, solving linear systems and generalized

eigenvalue problems ­ SciPy. Some parts of the code require many calls of the interpreter (basically,

for­loops), so they have been re­writtenwith C++ andwrappedwith pybind11 tomake them callable

from Python. Since the calculations in the construction of spaces (snapshot, offline, online) recur

for each neighborhood and parameter value, and assembling of different blocks of the global matrix

can go independently, it is reasonable to parallel the work. We do it by leveraging OpenMPI. For

an arbitrary number of computing nodes available, one needs to write auxiliary algorithms for the

work distribution amidst the processes. We confine ourselves to considering only the case when

the number of cores is equal to the number of neighborhoods. This choice reduces the number of

communications among processes. (Off­topic: the mesh geometry also affects the communication

time. Take a look at figure 3.1. Triangular cells have maximum three ’bottom­right’ overlaps of

equal area, while square cells ­ four, and they of different size.) The module development and unit

tests are conducted in a Docker container. We run the experiments in Singularity containers on the

HPC cluster, Zhores.
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Figure 3.1: Triangular mesh.
The image is taken from [8]

3.2 Metrics

As stated in the previous section, we measure the solver performance by comparing its output

with what a standard FEM produces. More specifically, we calculate the L2 distance between

these two approximations. In addition to accuracy criteria, a good multiscale solver should meet

timing requirements. Possible, that offline space construction may be time­consuming. However,

one run of online calculations must be faster than the execution of a regular FEM approximation

procedure. For multiscale problems where the equation is to be solved several times, time spent

for both, construction of the offline space and online calculations, should be smaller than the total

time it takes FEM to make all runs.
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Chapter 4

Results and Discussion

4.1 Synthetic Experiments

The section is called so, because of the way the equation coefficients are created. They do not

relate to a specific problem from the physics domain. However, this fact does not make the sim­

ulation easy. Randomly generated vertical and horizontal strips of varying length form a mask of

the permeability coefficient. Thus, the distribution of high­contrast regions may have an irregular

structure, which causes issues during the discretization. If permeability coefficients are identical

or similar in some neighborhood ωi, then the union V ωi
snap =

∪
j

V ωi
snap,j of the corresponding snap­

shot functions will give ”rank­deficient” basis. Which, in turn, leads to singular matrices in the

generalized eigenvalue problem. There are two options one may use to cope with this impediment.

1. Re­discretize the computational domain: if there are many ”empty” regions, make coarse

elements bigger and fine elements smaller (the latter helps to keep the balance)

2. Make matrices regular

• by adding a small value to the diagonal elements

(­ degrade approximation accuracy)

• with random perturbations [14]

With regard to the right­hand side (RHS), we just select the expressions that have an uncomplicated

analytical form, though the choice is not limited to this matter.

To test the implemented solver, we start by considering the case with no parameter. Following this

scenario, we only need to construct the snapshot and offline spaces. For the second one, the target

permeability coefficient is used during the build procedure. All outcomes of this stage are equiv­

alent to online computations. The following two figures present the comparison of approximated

solutions obtained with GMsFEM and FEM (2nd row, in the respective order) for two different

settings (1st row: permeability ­ left, source term ­ right).
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Figure 4.1: Experiment 1­1. No parameter. Exponential RHS
f = exp(−(x− 0.5)2 − (y − 0.5)2)

Figure 4.2: Experiment 1­2. No parameter. Sinusoidal RHS
f = sin 2πx sin 2πy
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GMsFEM is not a proper choice for this problem (applying it, we expect a large input parameter

space). The experiments with the latter serve more as a validation step. They demonstrate the

ability of GMsFESolver to build a decent approximation of the solution comparable to the one

obtained with FEM.

The next step is to tackle problems with a set of different input parameters. At this point, it is

important to make a compressible snapshot space. One should pay attention to the eigenvalue de­

cay. There are different techniques aimed at improving its rate: oversampling neighborhoods [15],

using different mass forms in generalized eigenvalue problem [6] We conduct experiment with a

small set of permeability coefficients. All stages of the GMsFEM are involved. The approxima­

tion attains an adequate accuracy. The timing results are presented in table 4.1. The speed gain

(online computations vs. FEM) is almost negligible, although the parallel pipeline is used. By and

large, this is due to dense­dense matrix multiplication used, which strongly affects the algorithm’s

asymptotic computational complexity.

Figure 4.3: Experiment 2. Averaged permeability.
Three colors are in use. Inclusions may overlap forming a new color
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Figure 4.4: Experiment 2. Parametric problem
First row: permeability masks; second row: GMsFESolver results; third row: FEM solutions

parallel GMsFEM FEM
offline 8 s –

online + GC 340 ms 16 s

Table 4.1: Experiment 2. Timing results
for parameter­dependent problem with Nµ = 3.

The rest settings: nω = 64, nℓK = 16, Noff = 20, Non = 8.
Dense­dense matrix multiplication (a.k.a. DDP ­ see tables 4.3,4.4)
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4.2 Complexity Analysis

To understand the potential of GMsFEM, we estimate the complexity of each method’s stage. We

take into account the band structure of matrices assembled from fine­grid functions of Vh, the cost

of matrix multiplication in case of dense­dense and dense­sparse arguments *. (In the table cells, if

the type is not specified, DDP complexities are displayed) It is supposed to use an iterative solver

for large linear systems, and direct methods ­ for small ones.

CT communication time
S communicator size
Ttag(N,S) CT of tag operation

with N parties involved
tag:G gather
tag:SR send­recv redistribution
w matrix bandwidth
DDP dense­dense matrix product
DSP dense­sparse matrix product

Table 4.2: Notation exposed in Complexity Analysis section

Space Operation Complexity per Call # Calls

Snapshot
System assembling O(w(2nℓK + 1)2) Nµ

Apply BC and solve the system O(w2(2nℓK + 1)2) 8nℓKNµNω

Step cost O(w2NµNωN1.5
ℓK
)

Offline

Matrix assembling O(w(2nℓK + 1)2) 2Nω

Matrix multiplication (e.g., RM,SR⊤) O(8nℓK (2nℓK + 1)4) 2Nω

Finding Noff dominant eigenpairs O(Noff(8nℓK )
2) Nω

Step cost (DDP) O(NωN2.5
ℓK
)

Step cost (DSP) O(NωN2
ℓK
)

Online

Matrix assembling O(w(2nℓK + 1)2) 2Nω

Matrix multiplication (e.g., RM,SR⊤) O(Noff(2nℓK + 1)4) 2Nω

Finding Non dominant eigenpairs O(NonN
2
off) Nω

Step cost (DDP) O(NωNoffN2
ℓK
)

Step cost (DSP) O(NωN2
offNℓK)

Table 4.3: Complexities of constructing spaces in serial
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Block Operation Complexity per Call # Calls

Diagonal
Matrix and vector assembling O(w(2nℓK + 1)2) Nω

Matrix multiplication O(Non(2nℓK + 1)4) 2Nω

Step cost (DDP) O(NωNonN2
ℓK
)

Step cost (DSP) O(NωN2
onNℓK)

Off­diagonal

Assembling of top/right O(w(nℓK + 1)(2nℓK + 1)) 2(Nω − nω)

Multiplication with top/right O(Non[(nℓK + 1)(2nℓK + 1)]2) 2(Nω − nω)

Assembling of top­right/top­left O(w(nℓK + 1)2) 2(Nω − 2nω + 1)

Multiplication with top­right/top­left O(Non(nℓK + 1)4) 2(Nω − 2nω + 1)

Step cost (DDP) O(NωNonN2
ℓK
)

Step cost (DSP) O(NωN2
onNℓK)

Table 4.4: Complexity of the global coupling procedure in serial

Stage
Complexity

Serial Parallel

DDP DSP DDP DSP CT

Snapshot O(NµNωN
1.5
ℓK

) O(N1.5
ℓK

) + TG(Nµ,S)

Offline O(NωN
2.5
ℓK

) O(NωN
2
ℓK
) O(N2.5

ℓK
) O(N2

ℓK
) + TSR(Nµ,S)

Online O(NωNoffN
2
ℓK
) O(NωN

2
offNℓK ) O(NoffN

2
ℓK
) O(N2

offNℓK ) + TSR(4,S)
Global
Coupling O(NωNonN

2
ℓK
) O(NωN

2
onNℓK ) O(NonN

2
ℓK
) O(N2

onNℓK ) + TG(Nω,S)
Direct
Solver

O(NωN
2
on)

Table 4.5: Complexity analysis summary of GMsFEM

Operation Complexity per Call # Calls

System assembling O(wN2
ω(2nℓK + 1)2) 1

Iterative solver call O(wN2
ω(2nℓK + 1)2) k

Overall O(kwN2
ωNℓK ) → O(N2

ωNℓK)

Table 4.6: Complexity of a standard FEM

As a rule, Non is small (experimentally confirmed that the online space is well­compressible), so

we can discard in table 4.5 terms containing it. In this way, we can conclude the speedup which

GMsFEM gives w.r.t. FEM strongly depends on the compression of the offline space and the

number of coarse blocks. In the extreme case: when the implementation is serial, the compression

is imperceptible, and DDP is used, GMsFEM is always slower than FEM ­ tGMsFEM
tFEM

= NℓK
Non+Noff

Nω

Parallel implementation onNω cores and accounting of sparse matrix structure (mass and stiffness)

boost this ratio to N2
off+N2

on
N2

ω
(without considering the cost of communication operations) It is worth

mentioning that a regular FEMcan be parallelized as well. However, there is definitely less freedom

in its parallelization.
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Chapter 5

Conclusion

In this paper, we implement a parallel version of GMsFEM and test its performance in the cluster

environment. We study the time complexity of the underlying algorithm and compare it with the

conventional approach ­ FEM. The analysis shows that GMsFESolver has a high degree of par­

allelism and can benefit greatly from being run on a sufficient number of cores. We indicate that

the serial implementation can beat a regular FEM in tasks with repetitive calculations only if one

considers all optimization steps in the former’s development. For the problems used in the exper­

iments, the parallel scheme simulates a solution with good accuracy and builds the online space

within a short time. Global coupling proceeds with an adequate speed in P1 space. Care needs to be

exercised when constructing the snapshot space. It may come that some functions thereof are de­

pendent, so the space is difficult to compress. One can mend this issue with a proper discretization;

or by adding regularization terms to the stiffness and mass matrices.
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Appendices
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.1 Convergence

Although convergence analysis is not the purpose of this study, it is a crucial point in all numerical

methods. So, some of the materials on this matter are presented below. We do not reproduce here

any results, since each of them is built on a bulky list of assumptions, lemmas, and hypotheses.

Otherwise, it would be just a rote copying of the articles.

• GMsFEM

– the first error estimates andmention of a decrease in the approximation error with coarse

mesh refinement ­ [1].

– the explicit expression for the error bounds showing dependence on the coarse mesh

size and magnitude of the largest left­out eigenvalue1 [16, 17]

• FEM: dependence on the mesh size and polynomial degree [18]

.2 DSP

Dense­sparse matrix product (for illustrative purposes only)

Algorithm * Outline of DSP
A is a dense matrix, (n, n)
B is a band n× n­matrix, re­written in the form (w, n)

with padding where needed
C is the result of their product
for i := 1,n do
for j := 1,n do
for k := 1,w do
C[i,j] = A[i,j+k]B[k,j]

end for
end for

end for

Easy to see, the complexity is O(wn2)

1the largest or the smallest eigenpairs depends on how the GHEP is defined:

* Mx = λSx ­ the dominant ones

* Sx = λMx ­ the smallest
­ always check the adopted notation
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