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Abstract—Topic modeling is an area of text analysis actively
developing over the past 20 years. A probabilistic topic model
(PTM) finds a set of hidden topics from a collection of text
documents. It defines each topic as a probability distribution
over words and describes each document as a probability mixture
of topic distributions. Learning algorithms for topic models are
usually based on Bayesian inference or log-likelihood maximiza-
tion. In both cases, EM-like algorithms are used. In this paper,
we propose to replace the logarithm in the log-likelihood by an
arbitrary smooth loss function. We prove that such a modification
preserves both the structure of the algorithm and compatibility
with any regularizers in terms of additive regularization of topic
models (ARTM). Moreover, in the case of a linear loss, the E-
step becomes much faster due to the omission of a normalization.
We study combinations of the fast and usual E-steps and compare
them to regularization using different number of topics in both
offline and online versions of EM-algorithm. For an empirical
comparison of the algorithms, we estimate perplexity, coherence,
and learning time. We use an efficient parallel implementation
of the EM-algorithm from the BigARTM open-source library.
We show that in most cases the two-stage strategy wins, which
uses fast E-steps at the beginning of iterations, then proceeds
with usual E-steps.

I. INTRODUCTION

Topic modeling is a popular technique for understanding
the thematic structure of text collections [1]. A probabilistic
topic model of a text collection defines each topic by a multino-
mial distribution over words, and then describes each document
with a multinomial distribution over topics. Topical vector rep-
resentations of texts are widely used in information retrieval,
classification, categorization, summarization and segmentation
of texts [2]. Historically, the first such model was Probabilistic
Latent Semantic Analysis, PLSA [3] and its Bayesian exten-
sion named the Latent Dirichlet Allocation, LDA [4]. Since
then, topic modelling has been mainly developed within the
framework of graphical models and Bayesian learning. Over
the past years, hundreds of extensions of LDA and PLSA have
been emerged which take into account linguistic considera-
tions, metadata, modalities, languages, topical hierarchies, and
various problem-specific requirements [5].

In complicated applications such as exploratory search [6],
social media analysis [7], [8], discovering health information
from tweets [9], summarizing legislative documents [10], con-
sumer profiling [11], etc. it is desirable for the topic model
to satisfy multiple requirements at once. Although the multi-
objective nature of topic modeling has been recognized for
a long time [12], the popular Bayesian inference techniques did
not provide a simple way to combine topic models or to learn
them using multi-objective optimization. Additive Regulariza-
tion of Topic Models (ARTM) is a non-Bayesian approach that

addresses this issue [13]. ARTM is not a particular topic model
or a family of models, but a general framework for learning
combined topic models with desired properties [14].

ARTM is based on the maximization of the log-likelihood
criterion together with a weighted sum of auxiliary regular-
ization criteria. Many of topic models originally proposed in
Bayesian terms can be re-formulated as likelihood maximiza-
tion with an additive regularizer [15]. Almost all known types
of topic models allow an alternative non-Bayesian represen-
tation including multimodal, multilingual, sparse, correlated,
temporal, n-gram, hierarchical, graph-based, sentence-based,
short-text, sentiment and many others. Examples of such a de-
Bayesianization can be found in [15]. Then ARTM gives a way
to combine topic models by optimizing log-likelihood together
with the weighted sum of their corresponding regularization
criteria. This technique is called linear scalarization in terms
of multi-objective optimization.

This idea led to the modular technology for topic modeling
implemented in the BigARTM project [16] — an open-source
community-driven library for topic modeling, available at
http://bigartm.org. BigARTM implements a fast parallel EM-
algorithm leaving the possibility of adding custom regularizers.

The goal of this work is to make the implementation even
faster and also reduce memory consumption. To make the
EM-algorithm faster, we generalize the log-likelihood criterion
replacing the logarithm by an arbitrary smooth monotonically
increasing loss function. In the case of a linear loss, this
allows to omit the stage of normalization from the E-step
of the regularized EM-algorithm. To make the EM-algorithm
less memory intensive, we switch to sparse data representation
when it becomes profitable.

The paper has the following structure: section II introduces
a regularized EM-algorithm for ARTM optimization problem;
in section III we infer a new generalized EM-algorithm for
arbitrary loss function; section IV describes some implemen-
tation issues; section V describes how BigARTM uses model
sparseness in order to reduce memory consumption. Quality
measures are introduced in section VI; experimental results are
reported in section VII; the summary and recommendations are
given in section VIII. We conclude in section IX.

II. LEARNING TOPIC MODEL WITH REGULARIZATION

Consider a set of documents D with a vocabulary of
terms W . Terms can be words or n-grams depending on
the text preprocessing used. Let nwd denote the number of
times the term w occurs in the document, nd is the length
of the document d. Probabilistic topic model approximates
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the observable term frequency in the document p̂(w | d) = nwd

nd

by a probabilistic mixture of document-independent term dis-
tributions ϕwt = p(w|t) weighted by conditional topic proba-
bilities θtd = p(t|d):

p(w | d) =
∑
t∈T

p(w | t) p(t | d) =
∑
t∈T

ϕwtθtd. (1)

Learning model parameters Φ = (ϕwt) and Θ = (θtd) from
data (ndw) is a problem of stochastic matrix factorization. This
problem is ill-posed, since the set of its solutions is generally
infinite. In the additive regularization framework ARTM [13],
we find an appropriate stable solution by maximizing the
weighted sum of the model log-likelihood and auxiliary regu-
larization criterion R(Φ,Θ) under normalization constrains:∑

d∈D

∑
w∈d

ndw ln
∑
t∈T

ϕwtθtd +R(Φ,Θ) → max
Φ,Θ

; (2)∑
w∈W

ϕwt = 1, ϕwt � 0;
∑
t∈T

θtd = 1, θtd � 0. (3)

Denote by “norm” the operator that normalizes a real vector
to make it a discrete probability distribution:

pi = norm
i∈I

(xi) =
max{0, xi}∑

k∈I max{0, xk} , for all i ∈ I;

if xi � 0 for all i ∈ I , then norm(x) equals zero vector.

The following theorem from [14] gives a simple way to
solve the system (2)–(3) numerically for any differentiable R.
The cornerstone of ARTM approach is that you can learn
a huge variety of topic models simply by changing the regu-
larizer R in this general solution. Moreover, you can combine
topic models using a weighted sum of their corresponding
regularizers instead of R. Examples of useful regularizers R
can be found in the survey [15].

Theorem 1: The local maximum (Φ,Θ) of the optimiza-
tion problem (2)–(3) with differentiable regularizer R satisfies
the following system of equations with auxiliary variables nwt,
ntd, and ptdw = p(t | d, w):

ptdw = norm
t∈T

(
ϕwtθtd

)
; (4)

ϕwt = norm
w∈W

(
nwt+ϕwt

∂R

∂ϕwt

)
; nwt =

∑
d∈D

ndwptdw; (5)

θtd = norm
t∈T

(
ntd+θtd

∂R

∂θtd

)
; ntd =

∑
w∈d

ndwptdw. (6)

In the Expectation–Maximization (EM) algorithm, we
solve equations (4)–(6) with a fixed-point iteration method,
turning these equations into updates. At the start, we initial-
ize ϕwt by random values, and we assign uniform distribu-
tions to θd columns. At each iteration, we compute auxiliary
variables ptdw from parameters ϕwt, θtd according to E-step
formula (4), then we compute parameters ϕwt, θtd from aux-
iliary variables ptdw according to M-step formulas (5)–(6).
We alternate E-step and M-step in a loop until convergence.

PLSA model [3] corresponds to zero regularizer R = 0.

LDA model [4] can be considered as a particular case
of smoothing (sparsing) regularizer [15] that makes ϕwt, θtd

values closer to (further from) the given positive (negative)
values βwt, αtd:

R(Φ,Θ) =
∑
t∈T

∑
w∈W

βwt lnϕwt +
∑
d∈D

∑
t∈T

αtd ln θtd.

In our experiments we also use the decorrelation regularizer
that makes topics as diverse as possible by minimizing the sum
of pairwise topic dot products:

R(Φ) = −τ

2

∑
t∈T

∑
s∈T\t

∑
w∈W

ϕwtϕws.

Decorrelation was first introduced in the Topic Weak Corre-
lated LDA (TWC-LDA) model within the Bayesian framework
[17] and later adopted as a non-Bayesian regularizer in [14].

III. LEARNING TOPIC MODEL WITH ARBITRARY LOSS

Now we generalize the optimization problem (2)–(3),
replacing the logarithm in the standard log-likelihood loss
ln p(w | d) with a smooth function �:∑

d∈D

∑
w∈d

ndw�
(∑
t∈T

ϕwtθtd

)
+R(Φ,Θ) → max

Φ,Θ
. (7)

Theorem 2: The local maximum (Φ,Θ) of the optimiza-
tion problem (7), (3) with differentiable loss � and differen-
tiable regularizer R satisfies the system of M-step equations
(5)–(6) and the E-step equation

ptdw = ϕwtθtd�
′
(∑

t∈T

ϕwtθtd

)
. (8)

Thus, the system of equations differs from the classical one
(4)–(6) only in the E-step equation.

The proof of the theorem can be found in the appendix.

Note that Theorem 1 is an obvious consequence of Theo-
rem 2 for the particular case when �(p) = ln p. Only in this
case the E-step equation (8) gives the conditional probability
ptdw = p(t | d, w) in accordance with the Bayes’ rule (4).

In the case �(p) = p, the E-step equation (8) takes the
simplest form. Instead of likelihood maximization we max-
imize the weighted sum of dot-product similarities between
model term distributions p(w|d) and their respective empirical
estimates p̂(w|d) = ndw

nd
:∑

d∈D

nd

〈
p̂(w|d), p(w|d)〉+R(Φ,Θ) → max

Φ,Θ
.

This optimization principle seems as reasonable as the
classical likelihood maximization. Moreover, in this case
ptdw = ϕwtθtd. So, we can skip the computation of the
normalization factor in (4), which takes a lot of time when
processed for each document term. Potentially, this can give
a significant acceleration of the EM-algorithm. We call this
modification a fast E-step.

In the experiments, we will check whether this modification
really gives acceleration without affecting the model quality.
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IV. BIGARTM LIBRARY

BigARTM is a parallel implementation of EM-algorithm
for ARTM model training. The library supports three dif-
ferent data processing modes, namely, offline, synchronous
online, and asynchronous online ([18]). All these options were
designed to train models on large text collections. So the
collection is split into batches of documents for convenient
parallel computation. One thread is responsible for processing
one batch at a time. BigARTM can fit a model without storing
Θ matrix [16]. This could be achieved by moving computation
of per-document parameters θtd from M-step into E-step. More
precisely, by fixing Φ matrix and proceeding several document
passes, on each pass we use 2-step schema:

• compute ptdw variables using (4);

• estimate θtd parameters with (6).

These steps are repeated till parameters convergence based
on some criteria. Then parameters are considered optimal
and are used to compute the counters nwt. Afterwards both
ptdw and θd are removed from the memory. More precisely,
to increase the processing speed, the part of the Θ matrix
corresponding to the processed batch is stored in the memory;
ptdw are always stored only for the current document.

The offline algorithm proceeds several collection passes,
performing the described above E-step for each document. At
the end of each pass, we use the final (nwt) matrix to construct
new Φ during M-step.

The online algorithm proceeds E-step in the same way, but
M-step starts after processing of the given number of batches,
instead of the processing the whole collection. While fitting on
large collections, it allows us to use the train data for effective
ϕwt parameters update, which leads to faster model conver-
gence. The offline algorithm collects nwt counters during one
collection pass and resets them to zeros after M-step. Unlike
it, the online one at each moment has two nwt sets: the first
counter set is for the current batch, and another one is for all
data, processed before. The (nwt) matrix, which is used in (5),
is estimated by the weighted sum of two sets of counters,
thus accumulating all previously processed batches by virtue
of exponential moving average.

The asynchronous algorithm also differs from the options
described above. Indeed, it updates the ϕwt parameters in par-
allel with document processing. It becomes possible due to the
presence of two (or even more) sets of (nwt) and Φ matrices.
A new set of Φ based on previously processed documents is
prepared simultaneously with the processing of the next set
of documents. At this stage algorithm uses a previous version
of the parameters. This approach reduces the processing time.
The drawback is the increased memory consumption and loss
of likelihood at the end of one collection pass compared to
synchronous approach under similar conditions. However, the
asynchronous algorithm achieves better likelihood than offline
or synchronous online do in a given time interval [18].

Note that the presence of a regularizer forces to compute
and store the matrix of rwt = ϕwt

∂R
∂ϕwt

values at M-step (5).

The (rwt) matrix has the same size as Φ and (nwt) matrices.

V. BIGARTM OPTIMIZATION FOR SPARSE MODELS

In different ways, the sparsity of topic models is used
in many works, for instance, in [19] and [20]. Before we
start testing our hypotheses related to the fast E-step, we are
going to propose a way to optimize memory consumption and
computation time in BigARTM when training sparse models.
It allows us to increase the training performance significantly
with sparsification regularizers.

BigARTM uses the same data structure to store model
parameters Φ, the nwt counters and rwt correction values (let
us call it a Φ-like matrix). For now, it is a dense real-valued
matrix in which the values are stored line by line, so for each
term w the corresponding values are located in memory as
a single continuous block. The main advantage is that the
memory can be accessed in a locally sequential way while
processing loops over a set of topics (as in the 4 formula,
which accounts for the bulk of the calculations).

Local access results in significant train speed-up when
compared to random access (e.g., in a situation when the
sequential loop requires access to different parts of memory).
However in case of sparse model calculations for most of the
elements will be wasted as they are zero. Primitive solution is
to use a condition operator, but it worsens performance even
more because multiplication is cheaper than code branching.

Hence we need to process only non-zero elements of Φ
matrix and also save the locality of memory access.

One of the possible solutions is to store Φ-like matrices in
CSR (Compressed Sparse Row) format. It reduces the memory
required by the model in the case of high sparsity significantly
and gives an ability to organize effective loop over non-zero
elements in each of its rows. The problem is that in this case,
we need to fix the positions of non-zero elements, which is
impossible for (nwt) matrix, as we collect counters and update
its values during E-step. Also, applying regularization may lead
to the non-uniform sparse structure of the model, where some
parts of the rows will be dense, and some — sparse. In such
case, it would be worth using dense representation for dense
rows and sparse — for sparse ones.

For these reasons, we propose a hybrid format, in which
the storage unit is not the entire matrix, but rather each of
its rows separately. For the proposed approach, an array S of
length m can be stored in one of two forms, either sparse or
dense. The current form choice depends on the number k of
non-zero elements in it. In the dense case, the array is stored
as a continuous memory block (as it was stored before). The
sparse form uses three arrays: V , I and M . The real-valued
array V contains all non-zero elements of S in the original
order. An integer array I stores for each element of V its
index in the original array. Finally, M is a bitmap with length
m; its elements are equal to 1 or 0 if corresponding elements
in S are greater than zero or equal to it, respectively.

We need M to organize effective (O(1)) random access to
zero elements of S. Indices array I allows O(log(k)) difficulty
of access by index operation for non-zero elements of S. It also
gives ability to proceed a loop over non-zero elements. This
feature is the most important when calculating scalar products
between ϕwt and θtd in E-step formula (4). If considering the
θtd vector is dense (this is done to speed up the processing
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of the document and is not a significant problem since the
vectors θd are stored only for documents from the current
batch), the presence of indices of non-zero elements in ϕwt

allows proceeding only multiplications of elements with these
indices. This preserves the locality of the operation in memory
and avoids the use of heavyweight conditional operators.

To complete optimization procedure, we need to set a
threshold for the ratio of non-zero elements. The rows, in
which the ratio of non-zero values is above threshold, are
stored in the dense form, otherwise in the sparse one. This
threshold can be approximately estimated based on the require-
ment to prevent memory consumption in a sparse form greater
than in a dense one. To do this, we formulate and solve the
inequality: 2k + (m/8) < m ⇒ k < 0.4375 m. Based
on this inequality, the value 0.4 was chosen as the maximum
fraction of non-zero elements for storing in a sparse form.

VI. QUALITY MEASURES

Two quality measures are most often used for topic model
evaluation. Perplexity is an inverse of the likelihood of data,
i.e., the smaller it is, the better:

P(Φ,Θ) = exp

(
− 1

n

∑
d∈D

∑
w∈d

ndw ln p(w | d)
)
.

The coherence of a topic t is the average positive pointwise
mutual information (PPMI) over term pairs:

Ct(Φ) =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

PPMI(wi, wj),

where wi is the i-th term in the list of k most probable

terms in the topic t, PPMI(u, v) = max
{
0, ln |D|Nuv

NuNv

}
, Nuv

is the number of documents that contain terms u and v
nearby, Nu is the number of documents that contain the
term u. The coherence is known to be highly correlated with
expert judgments about topic interpretability [21]. Therefore
the average coherence over topics is commonly used as an in-
terpretability measure of the model calculated automatically
without asking human experts.

VII. EXPERIMENTS

For the experiments, we use a workstation with Intel(R)
Xeon(R) CPU E5-2680 v4 @ 2.40GHz and 128Gb memory.
All calculations are performed in eight threads. In the offline
algorithm, we always use the collection of 200K documents
sampled from English Wikipedia

in the Bag-of-Words
format (100 batches), in the online ones — 1M documents
from the same source (500 batches). Both collections share a
dictionary of 100K tokens. In all experiments, we compare
models with 100, 500, 1000 and 2000 topics.

Firstly we will show the positive effect of optimization,
introduced in V, in terms of memory consumption and training
time. Then using the optimized library we compare different
normalization strategies that will be further proposed.

TABLE I. OPTIMIZATION, OFFLINE ALGORITHM. COLUMNS: TOPICS

— NUMBER OF TOPICS IN MODEL, CASE — TYPE OF THE MODEL AND

TRAINING, MEMORY — PEAK MEMORY CONSUMPTION IN MEGABYTES, T.
(X) — TRAINING TIME IN SECONDS WHEN TRAIN WITH X DOCUMENT

PASSES. BEST VALUES ARE HIGHLIGHTED IN BOLD FONT.

Topics Case Memory T. (1) T. (5) T. (10) T. (15)
100 N/N 630 110 165 230 295

N/Y 710 120 170 240 305
Y/Y 720 130 170 220 275

500 N/N 1010 350 605 940 1275
N/Y 1220 370 635 965 1305
Y/Y 1210 390 570 775 990

1000 N/N 1470 690 1265 1925 2595
N/Y 1840 745 1305 1955 2640
Y/Y 1800 755 1070 1410 1750

2000 N/N 2620 1735 2885 4140 5430
N/Y 3190 1815 2945 4310 5530
Y/Y 3160 1860 2585 3315 3960

A. Experiments with models sparsification

In this set of experiments, we compare models

• without optimization for sparse models and without
sparsification regularization (N/N);

• without optimization for sparse models and with spar-
sification regularization (N/Y);

• with optimization for sparse models and with sparsi-
fication regularization (Y/Y).

The training time and the consumption of memory are com-
pared. To sparsify models, we use SmoothSparsePhi regular-
izer from BigARTM library with a default (uniform) strategy.
We sparsify models to get as a result a 95-99% (depending on
a number of topics) of zero elements in the final Φ matrix.

1) Offline algorithm: For the offline algorithm, we set
the number of collection passes equal to 10. The number
of document passes is selected from set 1, 5, 10, 15. The
regularization coefficients for the models with 100, 500, 1000
and 2000 topics are −1.0, −0.5, −0.5, −0.2 respectively. We
chose such values of the coefficients empirically as they allow
to achieve a high sparsity of the Φ and (nwt) matrices without
significant loss of perplexity. The results are shown in table I.
It is worth noting that hereinafter changes in the number of
the document passes lead to minor (within 5%) fluctuations in
peak memory consumption, so mean values are reported.

Sparse optimization does not give any improvement in
model with 100 topics or with a training algorithm that uses
only one document pass per collection pass. The model without
the sparsification regularization (due to the absence of the
(rwt) matrix) has the lowest memory consumption. At the
same time, the addition of sparsification combined with the
optimization allows in different cases to obtain up to 30%
acceleration compared to the dense model.

2) Online algorithm: In experiments with the online al-
gorithm, we use only one collection pass, while the num-
ber of document passes is selected from set 1, 5, 10, 15
again. Merging (nwt) matrices with following normalization
and regularization starts up every 32 processed batches. The
regularization coefficients for the models with 100, 500, 1000,
and 2000 topics, in this case, are −0.1, −0.03, −0.015, −0.01,
respectively.
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TABLE II. OPTIMIZATION, ONLINE ALGORITHM. COLUMNS: TOPICS

— NUMBER OF TOPICS IN MODEL, CASE — TYPE OF THE MODEL AND

TRAINING, MEMORY — PEAK MEMORY CONSUMPTION IN MEGABYTES, T.
(X) — TRAINING TIME IN SECONDS WHEN TRAIN WITH X DOCUMENT

PASSES. BEST VALUES ARE HIGHLIGHTED IN BOLD FONT.

Topics Case Memory T. (1) T. (5) T. (10) T. (15)
100 N/N 900 85 115 185 230

N/Y 990 95 125 165 200
Y/Y 950 90 110 150 160

500 N/N 1880 410 515 770 1010
N/Y 2100 395 495 805 1015
Y/Y 1950 390 450 650 700

1000 N/N 3150 720 900 1200 1785
N/Y 3600 740 940 1270 1780
Y/Y 3270 715 820 950 1245

2000 N/N 5800 1330 1820 2580 3650
N/Y 6580 1380 1890 2630 3315
Y/Y 5590 1200 1510 1840 2210

TABLE III. OPTIMIZATION, ASYNCHRONOUS ONLINE ALGORITHM.
COLUMNS: TOPICS — NUMBER OF TOPICS IN MODEL, CASE — TYPE OF

THE MODEL AND TRAINING, MEMORY — PEAK MEMORY CONSUMPTION

IN MEGABYTES, T. (X) — TRAINING TIME IN SECONDS WHEN TRAIN WITH

X DOCUMENT PASSES. BEST VALUES ARE HIGHLIGHTED IN BOLD FONT.

Topics Case Memory T. (1) T. (5) T. (10) T. (15)
100 N/N 1170 65 80 120 150

N/Y 1250 65 85 125 150
Y/Y 1110 60 75 110 125

500 N/N 2700 200 340 515 660
N/Y 2980 190 340 535 670
Y/Y 2270 185 290 450 500

1000 N/N 4640 520 730 1095 1435
N/Y 5230 555 760 1115 1475
Y/Y 3910 500 600 900 1065

2000 N/N 9110 860 1400 2140 2730
N/Y 9760 865 1415 2120 2720
Y/Y 7230 780 1120 1670 2010

Table II shows the result of comparison. As for the offline
algorithm, optimization does not give any advantage in the
case of models with a small number of topics and algorithms
with one document pass. In other cases, it also gives up to 30%
reduction in computation time compared to a dense model. An
additional advantage is that, unlike the offline algorithm, in
the case of online, sparse storage-processing can save memory
on the storage of intermediate versions of the (nwt) matrix.
Due to this, usage of regularization does not lead to increased
consumption of memory compared to N/N algorithm.

3) Asynchronous online algorithm: All parameters of the
experiments with asynchronous online algorithm use the same
set of the parameters as synchronous one. The results are
shown in table III. In all cases the asynchronous algorithm
obtains up to 25% acceleration compared to the dense model.
Sparse storage-processing reduces memory consumption in the
case of a regularized model (saving up to 23% in various cases)
compared to a dense model without regularization.

B. Experiments with E-step normalization

In the main set of experiments, we compare different
strategies of fast E-step usage. The combination of fast and
ordinary steps can be done along the collection passes (i.e.,
part of the passes should be done completely with the usual
steps, part — with fast), but it is also possible to use it during
document passes (both types of E-steps can be used while one
document processing). We call the described sets of strategies,
external and internal, respectively. As part of the experiment, it
is proposed in each group to compare five types of strategies:

TABLE IV. NORMALIZATION STRATEGIES, OFFLINE ALGORITHM.
COLUMNS: TOPICS — NUMBER OF TOPICS IN MODEL, CASE — MODEL

TYPE/E-STEPS COMBINATION STRATEGY, PERPLEXITY — FINAL

PERPLEXITY VALUE, COHERENCE — FINAL COHERENCE VALUE, OMT
(ON MIN TIME) — METRIC VALUE ON THE MOMENT OF THE FASTEST CASE

FINISH, TIME — TIME TO FINISH ALL COLLECTION PASSES IN SECONDS.
BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT.

Topics Case Perplexity [OMT] Coherence [OMT] Time
100 N/F 3729 [3769] 0.086 [0.083] 720

N/N 5333 [5333] 0.104 [0.104] 510
N/M 4038 [4357] 0.088 [0.098] 630
N/H 3747 [3774] 0.084 [0.083] 620
N/L 3827 [3874] 0.087 [0.083] 555
D/F 3741 [3795] 0.092 [0.090] 760

500 N/F 2076 [2123] 0.092 [0.093] 2850
N/N 3759 [3759] 0.098 [0.098] 1740
N/M 2442 [2811] 0.103 [0.103] 2375
N/H 2077 [2121] 0.093 [0.097] 2300
N/L 2169 [2264] 0.095 [0.096] 1945
D/F 2101 [2169] 0.094 [0.091] 3570

1000 N/F 1483 [1546] 0.078 [0.078] 5430
N/N 3122 [3122] 0.088 [0.088] 3295
N/M 1845 [2198] 0.092 [0.094] 4465
N/H 1474 [1498] 0.084 [0.084] 4224
N/L 1561 [1612] 0.084 [0.085] 3672
D/F 1571 [1619] 0.077 [0.077] 6649

2000 N/F 998 [1025] 0.057 [0.059] 11405
N/N 2574 [2574] 0.069 [0.069] 7775
N/M 1298 [1618] 0.071 [0.074] 9975
N/H 977 [1006] 0.063 [0.063] 9380
N/L 1049 [1129] 0.064 [0.065] 8570
D/F 1255 [1524] 0.056 [0.057] 28500

• FULL (F): all iterations are normal;

• NONE (N): all iterations are fast;

• MIXED (M): fast and normal iterations alternate, the
last iteration is always normal;

• HALF (H): the first half of the iterations is fast, the
second is the usual one;

• LAST (L): 80% of the first iterations are fast, the rest
are the usual ones.

Models are evaluated based on a set of criteria: training
speed, perplexity, and coherence. In order to evaluate co-
herence, the co-occurrence counters were collected over 1M
documents of English Wikipedia. The counter for the token
pair was incremented by one for each document where these
tokens appear at least once. Counters with value less than 100
were resets to 0. In addition to each other, all the described
methods are also compared to usual (i.e. FULL) models with
uniform sparsification (SPARSE, S) or topics decorrelation
(DECOR, D), provided by SmoothSparsePhi and Decorrela-
torPhi regularizers from BigARTM library respectively. Let us
denote the model without regularization as NONE (N).

1) Offline algorithm: For the offline algorithm, we con-
ducted a preliminary experiment in which we estimated the
value of perplexity for the same time spent with a different
number of document passes. As a result, it turned out that 5
document passes are optimal from this point of view. We use
this value in further experiments. The number of collection
passes is set to 40 (with this number of passes, by the
end of processing, perplexity almost stop changing). For an
offline algorithm, we study only external sets of strategies for
combining steps; internal one’s usage does not make much
sense as we can process the same document many times during
different collection passes.
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We tried several different regularization coefficients for
topic decorrelation regularization. The best results were ob-
tained using the coefficients 1e+6, 2e+5, 1e+5, 5e+4 for 100,
500, 1000, and 2000, respectively.

In the primary set of the experiments we measure two types
of perplexity and coherence values: one pair of numbers is
calculated at the time of completion of 40 collection passes,
the second one is obtained when a fixed allocated time has
passed. For each number of topics, the value of time interval
is determined by the training time of the fastest algorithm.

The table IV shows that

• the decorrelation without fast E-steps is the best choice
in case of model with 100 topics;

• the decorrelation is failing in all other cases because
computation time of this regularizer increases quadrat-
ically while number of topics grows;

• the NONE strategy is obviously the fastest one, and
also improves coherence, but it spoils perplexity very
much;

• the HALF strategy is an optimal choice both in case
of fixed number of collection passes (the train time
saving is up to 20%) and in case of processing until
the end of the time interval; anyway we save or even
decrease final perplexity value and achieve up to 10%
coherence growth.

It is worth saying that experiments with uniform sparsifi-
cation were not included in the results table, as well as some
ones with the parallel usage of regularizers and mixed E-step
strategies, because they didn’t yield any positive results.

2) Online algorithm: Online algorithms are designed for
on-the-fly collections processing, so the number of collection
passes is set to 1. In this case, we can increase the number of
document passes to achieve better perplexity, but it is expected
to increase training time. As a compromise, the number of
document passes is fixed and is equal to 10 for all experiments.
The frequency of the model updates remains the same as in
previous experiments with online algorithms (once per every
32 processed batches).

As in the case of the offline algorithm, we want not only to
obtain acceleration when using mixed normalization strategies
at the E-step, but also be able to use this gain in order to try
to improve the quality of the model due to it. Since we cannot
avoid processing of some part of the collection, it is proposed
to use the time gained for training with more frequent model
updates (every 24, 16 and 8 batches).

For the online algorithm, as well as for the offline one,
the coefficients of the decorrelation regularizer were cross-
validated. The set 1e+5, 5e+3, 2e+3, and 1e+3 for 100, 500,
1000, and 2000 topics, respectively, turned out to be the
best one. In the regularizer of uniform sparsification, the
coefficients 0.1, 0.03, 0.015, 0.01 are used for the same set
of numbers of topics.

Note that in this paper, we present the results of the
experiments with both versions of the online algorithm only
for the group of internal strategies for E-steps mixing. We

TABLE V. NORMALIZATION STRATEGIES, ONLINE ALGORITHM.
COLUMNS: TOPICS — NUMBER OF TOPICS IN MODEL, CASE — MODEL

TYPE/E-STEPS COMBINATION STRATEGY, PERPLEXITY — FINAL

PERPLEXITY VALUE, COHERENCE — FINAL COHERENCE VALUE, OMT
(ON MIN TIME) — METRIC VALUE ON THE MOMENT OF THE FASTEST CASE

FINISH, TIME — TIME TO FINISH ALL COLLECTION PASSES IN SECONDS.
BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT.

Topics Case Update every Perplexity Coherence Time

100
N/F 32 8983 0.091 180
N/N 32 10323 0.074 100
N/M 32 9138 0.084 135
N/H 32 9033 0.081 135
N/L 32 9721 0.077 115
S/F 32 8891 0.066 155
D/F 32 8862 0.128 190
N/H 24 8104 0.077 155
N/H 16 7031 0.084 190
N/H 8 6030 0.095 285

500
N/F 32 6630 0.080 710
N/N 32 9427 0.047 365
N/M 32 7342 0.071 540
N/H 32 7030 0.076 545
N/L 32 8314 0.056 440
S/F 32 6563 0.056 525
D/F 32 6401 0.077 820
N/H 24 6189 0.075 620
N/H 16 5265 0.080 750
N/H 8 4442 0.071 1120

1000
N/F 32 5871 0.063 1435
N/N 32 9113 0.044 835
N/M 32 6712 0.055 1145
N/H 32 6315 0.057 1120
N/L 32 7789 0.050 955
S/F 32 5663 0.051 1065
D/F 32 5558 0.053 2110
N/H 24 5519 0.057 1215
N/H 16 4652 0.060 1475
N/H 8 3890 0.058 2175

2000
N/F 32 5144 0.045 2995
N/N 32 8879 0.038 1630
N/M 32 6145 0.046 2315
N/H 32 5694 0.046 2320
N/L 32 7324 0.042 1911
S/F 32 4920 0.040 2145
D/F 32 7211 0.031 12780
N/H 24 4962 0.045 2595
N/H 16 4157 0.044 3155
N/H 8 3428 0.039 4589

do it since the external ones (in which some documents
are processed with normalization at the E-step and some —
without it) failed significantly compared to all cases.

The results of the experiments for an online synchronous
algorithm and group of internal E-step mixing strategies are
shown in table V. According to it, we can do the following
conclusions:

• the decorrelation is the best solution for a model with
100 topics and ill-suited one for large models again;

• usage of mixing strategies with the same frequency
of model updates reduces train time by 25-50%, but
worsen both perplexity and coherence significantly;

• usage of the most perspective strategy HALF with
more frequent updates allows us to gain a big (up to
23%) improvement of the perplexity with small decay
of speed and coherence or even without it.

Our attempts to use the time gained while usage of uniform
sparsification due to optimization, described in V, failed for
the synchronous online algorithm, as more frequent updates
decreased the already spoiled coherence significantly.
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TABLE VI. NORMALIZATION STRATEGIES, ASYNCHRONOUS ONLINE

ALGORITHM. COLUMNS: TOPICS — NUMBER OF TOPICS IN MODEL, CASE

— MODEL TYPE/E-STEPS COMBINATION STRATEGY, PERPLEXITY —
FINAL PERPLEXITY VALUE, COHERENCE — FINAL COHERENCE VALUE,

OMT (ON MIN TIME) — METRIC VALUE ON THE MOMENT OF THE

FASTEST CASE FINISH, TIME — TIME TO FINISH ALL COLLECTION PASSES

IN SECONDS. BEST RESULTS ARE HIGHLIGHTED IN BOLD FONT.

Topics Case Update every Perplexity Coherence Time

100
N/F 32 13391 0.070 115
N/N 32 13856 0.054 60
N/M 32 13262 0.066 90
N/H 32 13308 0.064 90
N/L 32 13545 0.061 70
S/F 32 12258 0.065 100
D/F 32 13619 0.096 115
N/H 24 11374 0.067 90
N/H 16 9373 0.077 95
N/H 8 7197 0.083 125
S/F 24 10638 0.063 100
S/F 16 9112 0.057 100
S/F 8 7554 0.039 130
D/F 24 11630 0.100 115
D/F 16 9614 0.134 120
D/F 8 7586 0.105 170

500
N/F 32 11034 0.070 490
N/N 32 12716 0.041 185
N/M 32 11385 0.059 340
N/H 32 11273 0.060 340
N/L 32 12024 0.047 245
S/F 32 9762 0.057 365
D/F 32 11007 0.093 495
N/H 24 9265 0.071 340
N/H 16 7343 0.075 355
N/H 8 5400 0.076 455
S/F 24 8166 0.054 345
S/F 16 6683 0.050 345
S/F 8 5377 0.036 415
D/F 24 8892 0.079 490
D/F 16 6908 0.079 540
D/F 8 5137 0.063 810

1000
N/F 32 10154 0.062 1010
N/N 32 12344 0.039 380
N/M 32 10652 0.054 710
N/H 32 10456 0.054 710
N/L 32 11452 0.042 520
S/F 32 8796 0.054 750
D/F 32 9895 0.061 1040
N/H 24 8472 0.057 700
N/H 16 6599 0.056 710
N/H 8 4788 0.058 900
S/F 24 7161 0.054 710
S/F 16 5716 0.047 680
S/F 8 4421 0.032 785
D/F 24 7856 0.057 1175
D/F 16 5935 0.052 1675
D/F 8 4346 0.044 3280

2000
N/F 32 9267 0.049 2150
N/N 32 12024 0.033 1050
N/M 32 9969 0.045 1590
N/H 32 9707 0.045 1540
N/L 32 10902 0.037 1225
S/F 32 7821 0.047 1560
D/F 32 8654 0.040 5435
N/H 24 7748 0.046 1590
N/H 16 5976 0.044 1615
N/H 8 4274 0.043 1890
S/F 24 6236 0.045 1470
S/F 16 4855 0.038 1390
S/F 8 3921 0.025 1550

3) Asynchronous online algorithm: Parameters of the ex-
periments for the asynchronous online algorithm are identical
to ones for synchronous algorithm. To understand the results,
remember that the asynchronous algorithm performs normal-
ization and regularization operations in the background, in
parallel with the processing of documents. This enhances the
effect of any acceleration on the E-step and allows algorithm
to ignore the costs of regularization until the time taken to

normalize and regularize does not exceed the processing time
of a set of batches between two model updates.

The results of experiments with E-steps mixing strategies
for asynchronous algorithm given in the table VI show that

• decorrelation is the most suitable choice for models
with 100 and 500 topics and is useless due to its slow
speed and low model quality in case of 1000 and 2000
topics;

• fast E-step usage gives even greater acceleration com-
pared to synchronous algorithm (up to two times for
NONE strategy), but the model quality with the same
updates frequency is worse than the in case of basic
algorithm;

• HALF strategy with more frequent model updates is
a best strategy for models with 1000 and 2000 topics:
with maximum coherence losses within 10%, it allows
to get more than twice the gain in perplexity, in all
cases remaining faster than the basic algorithm by 10–
30%;

• the uniform sparsification for a number of cases allows
to obtain a lower perplexity value for all update
frequencies compared to the HALF strategy without
regularization, and it works even faster due to opti-
mization for sparse models, but more frequent model
updates, necessary to improve perplexity, in this case
spoil the coherence very much (up to 80%).

VIII. KEY FINDINGS AND RECOMMENDATIONS

The list of conclusions, described in the previous section, is
quite extensive, so here we would like to provide a short set of
recommendations on the use of the proposed improvements. It
is worth noting that they fit models that are trained on relatively
large text collections (like the one we use in this paper).

The hybrid storage format is useful in all cases. Optimized
computation for sparse models is the best choice in case
of models with more than 100 topics, that are trained with
uniform sparsification and several document passes.

Fast E-steps are almost useless in case of small (less than
500 topics) models, as it is possible to achieve better results
using carefully tuned topics decorrelation regularizer. When
training model with a greater number of topics using the offline
algorithm the external HALF strategy with a reduced number
of collection passes is an optimal solution. In the case of
online algorithms, the most suitable choice is an internal HALF
strategy with 1.5-2 times higher Φ matrix updates rate.

IX. CONCLUSION

The contribution of this paper is twofold. First, we general-
ize the EM-algorithm for any differentiable loss function in an
optimized functional when training topic models. Second, we
find experimentally the superior strategy for combining normal
and fast E-steps, that allows us to achieve better train speed and
higher model quality in most cases. This strategy is used for
a different types of passes and provides significantly different
results when training with offline and online EM-algorithm.
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We consider BigARTM optimization for sparse models to
be an additional result of our work. Also, we have discovered
some new properties of the topic decorrelation regularizer, that
extend previous ones [14] to the cases of online algorithm and
models with many topics.

The future work includes more intensive study of regu-
larizers and mixing E-step strategies combinations, as well as
studying loss functions, other than linear and logarithmic ones.
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APPENDIX

The proof of the Theorem 2.

The Karush–Kuhn–Tucker (KKT) necessary conditions for the local
extremum (Φ,Θ) of the problem (7), (3) can be written as follows:∑

d∈D

ndwθtd�
′(p(w | d)) + ∂R

∂ϕwt
− λt + λwt = 0; (9)

λwt � 0; λwtϕwt = 0;∑
w∈W

ndwϕwt�
′(p(w | d)) + ∂R

∂θtd
− μd + μtd = 0; (10)

μtd � 0; μtdθtd = 0;

where λt and μd are KKT multipliers for normalization constraints, λwt and
μtd are KKT multipliers for nonnegativity constraints.

Let us multiply both sides of equation (9) by ϕwt and substitute the
auxiliary variable ptdw from (8). Then we substitute the sum over d ∈ D
by nwt auxiliary variable from (5). The calculations for θtd variables
from (10) are analogous:

ϕwtλt =
∑
d∈D

ndwptdw + ϕwt
∂R

∂ϕwt
= nwt + ϕwt

∂R

∂ϕwt
;

θtdμd =
∑

w∈W

ndwptdw + θtd
∂R

∂θtd
= ntd + θtd

∂R

∂θtd
.

An assumption that λt � 0 (μd � 0) leads to a degenerate case when
the t-th column of the Φ matrix (d-th column of the Θ matrix) equals
zero. Therefore, our main case is λt > 0 (μd > 0). Using the nonnegativity
condition ϕwt � 0 (θtd � 0) we write:

ϕwtλt = max

{
nwt + ϕwt

∂R

∂ϕwt
, 0

}
; (11)

θtdμd = max

{
ntd + θtd

∂R

∂θtd
, 0

}
. (12)

Let us sum both sides of the first equation over w ∈ W , then both sides
of the second equation over t ∈ T :

λt =
∑

w∈Wm

max

{
nwt + ϕwt

∂R

∂ϕwt
, 0

}
; (13)

μd =
∑
t∈T

max

{
ntd + θtd

∂R

∂θtd
, 0

}
. (14)

We obtain (5) by expressing ϕwt from (11) and (13); then we obtain (6) by
expressing θtd from (12) and (14). This completes the proof of the theorem.
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