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Deep Learning Considering data structure

Neural networks

What is neural net?

I parametric family f (x , θ), θ ∈ Θ

I with universal approximation properties

I differentiable

Deep Learning is Machine Learning!

Machine Learning is always about searching for function:

E(x ,y)∼Data Loss(f (x , θ), y)→ min
θ
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Neural networks

Building neural nets

Common way to build complex functions — composition:

f (x , θ) = f1(f2(f3(. . . )))

Chain rule gives us the derivative ∇f (x , θ)

Same works for functions of vectors!
Typical example:

fi (x , θ) ∈ {Ax , σ(x), . . . }

where σ — some element-wise nonlinear function.
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Neural networks

Typical example

Output:

I regression:
I just numbers
I parameters of distribution

I classification:

× just classes
I probabilities of classes
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Goals of deep learning

End-to-end learning
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Deep Learning Considering data structure

Goals of deep learning

Automation is the goal!

In DL we are required to specify:

I net topology

I trial and error
I evolutionary methods
X AutoML

I regularization
I dropout
I batch normalization
X Bayesian neural nets

I optimization method
I use more or less universal

methods like Adam
X Meta-learning

I data representation
I ”stack more layers”
I ”we need to go deeper”
X ?!?
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Section 2

Considering data structure
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Invariants

Pooling invariants
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Invariants

Translation invariance

Usually followed by:

I max pooling (one invariant is of a particular interest)
I other pooling options possible

I concatenation (for subtasks of same structure)
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Size invariance
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Invariants

Convolutional neural network (CNN)

Resulting network:
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Invariants

Augmentation
If you can’t consider invariants in architecture, enlarge your
dataset.
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Recurrent Neural Networks (RNN)

Sequences as input

Applying same idea:
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Recurrent Neural Networks (RNN)

Sequences as input

Naive approach:
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Recurrent Neural Networks (RNN)

Gradients problem

Problem:
Gradient is required to pass LN layers.

Chain rule says it’s multiplication of LN quantities.

I most absolute values < 1: vanishing gradients problem

I most absolute values > 1: exploding gradients problem
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Recurrent Neural Networks (RNN)

Recurrent units

Neuron
(e.g. σ(Axt))

Same idea applied
(redundant)

Recurrent neuron
(e.g. σ(A [xt , ht−1]))
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Recurrent Neural Networks (RNN)

Recurrent neural nets

X N + L layers for
gradient to pass!

? Was previous
option better at
something?
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Long Short-Term Memory (LSTM)

Memory

Consider writing to memory task, i. e. the following operation:

if need_to_write(x):

c = f(x)

How to express it in terms of computational graphs?

Memory update formula

ct = ft ◦ ct−1 + wt ◦ f (xt) wt , ft ∈ {0, 1}

where ◦ is element-wise multiplication.
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Long Short-Term Memory (LSTM)

Gates
wt , ft are also some functions of input! For example,

I[Axt > 0]

DL main rule: if something is not differentiable, make a smooth
(soft) version of it!
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Long Short-Term Memory (LSTM)

LSTM: recurrent neurons with memory.
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Long Short-Term Memory (LSTM)

LSTM: transforming data: c ′t = tanh(Ac [xt , ht−1])
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Long Short-Term Memory (LSTM)

LSTM: writing gate: wt = σ(Aw [xt , ht−1])
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Long Short-Term Memory (LSTM)
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Long Short-Term Memory (LSTM)

LSTM: ht = rt ◦ ct
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Long Short-Term Memory (LSTM)

LSTM: full scheme
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