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@00

Neural networks

What is neural net?

» parametric family f(x,6), 0 € ©
» with universal approximation properties

» differentiable

Deep Learning is Machine Learning!
Machine Learning is always about searching for function:

I[:1:(X,}/)~Data LOSS(f(X, 9)7)/) N mein

Sergey Ivanov (517)

Overview of Deep Learning Instruments pt. 1



Deep Learning
oeo

Neural networks

Building neural nets

Common way to build complex functions — composition:
f(x,0) = A(f(f(...)))

Chain rule gives us the derivative Vf(x, )

Sergey Ivanov (517)

Overview of Deep Learning Instruments pt. 1



Deep Learning
oeo

Neural networks

Building neural nets

Common way to build complex functions — composition:
f(x,0) = A(f(f(...)))

Chain rule gives us the derivative Vf(x, )

Same works for functions of vectors!

Sergey Ivanov (517)

Overview of Deep Learning Instruments pt. 1



Deep Learning
oeo

Neural networks

Building neural nets

Common way to build complex functions — composition:
f(x,0) = A(f(f(...)))

Chain rule gives us the derivative Vf(x, )

Same works for functions of vectors!
Typical example:

fi(x,0) € {Ax,o(x),...}

where 0 — some element-wise nonlinear function.
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Output Also some
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Output:

> regression:

> just numbers

» parameters of distribution
» classification:
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Deep Learning

[ Je]

Goals of deep learning

End-to-end learning

-
Input » ‘-Ej —>»  Features » »  Output
Feature Engineering Classifier with
(Manual Extraction+Selection) (a) shallow structure
Input > »  Output

Feature Learning + Classifier
(End-to-End Leaming)

(b)
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Considering data structure
o] Telele]

Invariants

Translation invariance

Usually followed by:

» max pooling (one invariant is of a particular interest)
» other pooling options possible

» concatenation (for subtasks of same structure)
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Size invariance
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Considering data structure
[e]e] le]e]

Invariants

Size invariance

“Local”
feedforward

Max-pooling (convolution) Max-pooling

Feedforward
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Considering data structure
[e]e]e] o]

Invariants

Convolutional neural network (CNN)

Resulting network:

27

13 dense dense|

256 100¢
Max

256 i

Max Max pooling 4096 4096

pooling pooling

Sergey Ivanov (517)

Overview of Deep Learning Instruments pt. 1



Considering data structure
[e]e]e] o]

Invariants

Convolutional neural network (CNN)

Output
Layer

FC
Layer 2

[
Layer 1

Fooling
Layer 2

Convaluticn
Layer 2

Foaling
Layer 1

Convolutior
Layer 1

Input Layer
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Invariants

Augmentation

Considering data structure
[e]eele] ]

If you can't consider invariants in architecture, enlarge your

dataset.
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Sequences as input

Naive approach:

51

X2

X1
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Considering data structure

o] lele)

Recurrent Neural Networks (RNN)
Gradients problem

)

X1 S1

©“
N

layers layers

N )

Problem:
Gradient is required to pass LN layers.
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Considering data structure

o] lele)

Recurrent Neural Networks (RNN)

Gradients problem
)
L L
SI

Problem:
Gradient is required to pass LN layers.

©“
N

Chain rule says it's multiplication of LN quantities.
> most absolute values < 1: vanishing gradients problem

» most absolute values > 1: exploding gradients problem
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Considering data structure

[e]e] 1o

Recurrent Neural Networks (RNN)

Recurrent units

Neuron
(e:g. o(Ax,))
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Considering data structure

[e]e] 1o

Recurrent Neural Networks (RNN)

Recurrent units

t L A

"

8¢ ]

T
"

PAAN

t [ Xt I St—1 ]
Neuron Same idea applied
(e.g. 0(Axt)) (redundant)
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Considering data structure

[e]e] 1o

Recurrent Neural Networks (RNN)

Recurrent units

L& s
f

__ <7 __
1 1 1
N N
[ Xt I Si—1 ] [ Xt I hi—1 ]

Neuron Same idea applied Recurrent neuron
(e.g. 0(Ax:)) (redundant) (e.g. o(A[xe, he—1]))
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Recurrent Neural Networks (RNN)

Recurrent neural nets
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Recurrent Neural Networks (RNN)

Recurrent neural nets

(on ) (e ) [wn ] [w])

1 B B k)
I_.I_.I ............. I
A v N+ L layers for
I NN I W I _____________ s I gradient to pass!
il __T" __T" Iy
TYTYY
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Considering data structure

oooe

Recurrent Neural Networks (RNN)

Recurrent neural nets

v N+ L layers for

D & & G gadent 0 pas

1 1 f A ? Was previous
N - S option better at
{—) {—) J; > { something?
e I R §
1 1 I I

Lxa ) (e ) (x ) Cow
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Considering data structure

@00

Long Short-Term Memory (LSTM)

Memory

Consider writing to memory task, i. e. the following operation:

if need_to_write(x):
c = f(x)

How to express it in terms of computational graphs?
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Long Short-Term Memory (LSTM)

Memory
Consider writing to memory task, i. e. the following operation:

if need_to_write(x):
c = f(x)

How to express it in terms of computational graphs?

c *= 1 - need_to_forget(x)
c += need_to_write(x) * f(x)
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Considering data structure

@00

Long Short-Term Memory (LSTM)

Memory
Consider writing to memory task, i. e. the following operation:

if need_to_write(x):
c = f(x)

How to express it in terms of computational graphs?

c *= 1 - need_to_forget(x)
c += need_to_write(x) * f(x)

Memory update formula

ct=foc—1+weof(xe) we,f€{0,1}

where o is element-wise multiplication.
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Considering data structure
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Long Short-Term Memory (LSTM)

Gates

we, fr are also some functions of input! For example,

I[Ax; > 0]
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Gates

we, fr are also some functions of input! For example,
I[Ax; > 0]

DL main rule: if something is not differentiable, make a smooth
(soft) version of it!
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Considering data structure

oeo

Long Short-Term Memory (LSTM)

Gates

we, fr are also some functions of input! For example,
I[Ax; > 0]

DL main rule: if something is not differentiable, make a smooth
(soft) version of it!

1.0 memmmmmmmmmmmmmemeeceee e

0.8
= 0.6 —— Indicator
2 e i
5 0.4 Sigmoid

0.2

00] ————————————————— oo

—60 —-40 —20 0 20 40 60
AXf
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Considering data structure

ooce

Long Short-Term Memory (LSTM)

LSTM: recurrent neurons with memory.

MEMORY|

C—1 71— 2>

—r—> concatenation

hy—y

INPUT X;
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Long Short-Term Memory (LSTM)

Considering data structure

ooce

LSTM: transforming data: c; = tanh(Ac [x¢, ht—1])

MEMORY|
—_
Cr—1

hy—y

\

Candidate value
for writing to
memory!

INPUT X;

Sergey Ivanov (517)
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linear transformation
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Considering data structure

ooce

Long Short-Term Memory (LSTM)

LSTM: writing gate: wy = o(Aw [x¢, ht—1])

MEMORY|

C—1 71— 2>

sigmoid from linear
transformation ("gate")

Shouldwe ™ - (., hyperbolic tangent from
wite? ) ] /—\Candidate alne linear transformation

for writing to

memory! concatenation

hy—y

ERCE

fork

/

INPUT X;
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Considering data structure

ooce

Long Short-Term Memory (LSTM)

LSTM: ¢ = froci 1+ wroc,

MEMORY|

C—1 71— 2>

element-wise
multiplication

&

sigmoid from linear
transformation ("gate")

Shouldwe ™ - /[ hyperbolic tangent from
wite? ) ] /—\Candidate alne linear transformation

!

for writing to

memory! concatenation

hy—y

fork

4G

INPUT X;
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Considering data structure

ooce

Long Short-Term Memory (LSTM)

LSTM: ¢, = froct—1+ wrocy

[ _— N

element-wise

MEMORY|
VR ® multiplication
Cy_1 Ct N
element-wise
addition

sigmoid from linear
transformation ("gate")

hyperbolic tangent from
linear transformation

44 G

for writing to

memory! concatenation

Shouldwe _:: RN
write? - Candidate value

hy—y

fork

INPUT X;
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Long Short-Term Memory (LSTM)

Considering data structure

ooce

LSTM: ¢t =froci—1+wrocy

c ORGETTING WRITING \

MEMORY|

e
I I 7

INPUT X;
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Long Short-Term Memory (LSTM)

Considering data structure

ooce

LSTM: ht = I+ o ¢t

c ORGETTING

MEMORY|

WRITING

\

Cr—1

il

hy—y I

READIN(y

INPUT X;
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Long Short-Term Memory (LSTM)

Considering data structure

ooce

LSTM: full scheme

c ORGETTING

o WRITING

MEMORY|

Cy_1 & Ct
OUTPUT

hy—y I

INPUT X;
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