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Abstract Probabilistic topic modeling of text collections has been recently devel-
oped mainly within the framework of graphical models and Bayesian inference.
In this paper we introduce an alternative semi-probabilistic approach, which we
call Additive Regularization of Topic Models (ARTM). Instead of building a purely
probabilistic generative model of text we regularize an ill-posed problem of stochas-
tic matrix factorization by maximizing a weighted sum of the log-likelihood and
additional criteria. This approach enables us to combine probabilistic assumptions
with linguistic and problem-specific requirements in a single multi-objective topic
model. In the theoretical part of the work we derive the regularized EM-algorithm
and provide a pool of regularizers, which can be applied together in any combina-
tion. We show that many models previously developed within Bayesian framework
can be inferred easier within ARTM and in some cases generalized. In the experi-
mental part we show that a combination of sparsing, smoothing, and decorrelation
improves several quality measures at once with almost no loss of the likelihood.

Keywords probabilistic topic modeling · regularization of ill-posed problems ·

Probabilistic Latent Sematic Analysis · Latent Dirichlet Allocation · EM-algorithm

1 Introduction

Topic modeling is a rapidly developing branch of statistical text analysis (Blei
2012). A probabilistic topic model of a text collection defines each topic by a multi-
nomial distribution over words, and then describes each document with a multi-
nomial distribution over topics. Such representation reveals a hidden thematic
structure of the collection and promotes the usage of topic models in information
retrieval, classification, categorization, summarization and segmentation of texts.
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Latent Dirichlet Allocation LDA (Blei et al 2003) is the most popular proba-
bilistic topic model. LDA is a two-level Bayesian generative model, in which topic
distributions over words and document distributions over topics are generated
from prior Dirichlet distributions. This assumption reduces model complexity and
facilitates Bayesian inference due to the conjugacy of Dirichlet and multinomial
distributions. Hundreds of LDA extensions have been developed recently to model
natural language phenomena and to incorporate additional information about au-
thors, time, labels, categories, citations, links, etc. (Daud et al 2010).

Nevertheless, building combined and multi-objective topic models remains
a difficult problem in Bayesian approach because of a complicated inference in
the case of a non-conjugate prior. This open issue is little discussed in the litera-
ture. An evolutionary approach has been proposed recently (Khalifa et al 2013),
but it seems to be computationally infeasible for large text collections.

Another difficulty is that Dirichlet prior conflicts with natural assumptions
of sparsity. A document usually contains a small number of topics, and a topic
usually consists of a small number of domain-specific terms. Therefore, most
words and topics must have zero probabilities. Sparsity helps to save memory
and time in modeling large text collections. However, Bayesian approaches to
sparsing (Shashanka et al 2008; Wang and Blei 2009; Larsson and Ugander 2011;
Eisenstein et al 2011; Chien and Chang 2013) suffer from an internal contradiction
with Dirichlet prior, which can not produce vectors with zero elements.

To address the above problems we introduce a non-Bayesian semi-probabilistic
approach — Additive Regularization of Topic Models (ARTM). Learning a topic
model from a document collection is an ill-posed problem of approximate stochas-
tic matrix factorization, which has an infinite set of solutions. To choose a better
solution, we add regularization penalty terms to the log-likelihood. Any problem-
oriented regularizers or their linear combination may be used instead of Dirichlet
prior or together with it. The idea of ARTM is inspired by Tikhonov’s regulariza-
tion of ill-posed inverse problems (Tikhonov and Arsenin 1977).

Additive regularization differs from Bayesian approach in several aspects.
Firstly, we do not aim to build a fully generative probabilistic model of text.

Many requirements for a topic model can be more naturally formalized in terms
of optimization criteria rather than prior distributions. Regularizers may have
no probabilistic interpretation at all. The structure of regularized models is so
straightforward that their representation and explication in terms of graphical
models is no longer needed. Thus, ARTM falls into the trend of avoiding excessive
probabilistic assumptions in natural language processing.

Secondly, we use the regularized Expectation-Maximization (EM) algorithm
instead of more complicated Bayesian inference. We do not use conjugate priors,
integrations, and variational approximations. Despite these fundamental differ-
ences both approaches often result in the same or very similar learning algorithms,
but in ARTM the inference is much shorter.

Thirdly, ARTM considerably simplifies both design and inference of multi-
objective topic models. At the design stage we formalize each requirement for the
model in a form of a regularizer — a criterion to be maximized. At the inference
stage we simply differentiate each regularizer with respect to the model parameters.

ARTM also differs from previous regularization techniques each designed for
a particular regularizer such as KL-divergence, Dirichlet prior, L1 or L2 penalty
terms (Si and Jin 2005; Chien andWu 2008; Wang et al 2011; Larsson and Ugander
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2011). ARTM is not an incremental improvement of a particular topic model, but
a new instrument for building and combining topic models much easier than in
the state-of-the-art Bayesian approach.

The aim of the paper is to introduce a new regularization framework for topic
modeling and to provide an initial pool of useful regularizers.

The rest of the paper is organized as follows.

In section 2 we describe PLSA (Probabilistic Latent Semantic Analysis) model,
the historical predecessor of LDA. We introduce the EM-algorithm from optimiza-
tional point of view. Then we show experimentally on synthetic data that both
PLSA and LDA give non-unique and unstable solutions. Further we use PLSA as
a more appropriate base for a stronger problem-oriented regularization.

In section 3 we introduce the ARTM approach and prove general equations for
regularized EM-algorithm. This is a main theoretical contribution of the paper.

In section 4 we work out a pool of regularizers by revising known topic mod-
els. We propose an alternative interpretation of LDA as a regularizer that mini-
mizes Kullback–Leibler divergence with a fixed multinomial distribution. Then we
consider regularizers for smoothing, sparsing, semi-supervised learning, topic cor-
relation and decorrelation, topic coherence maximization, documents linking, and
document classification. Most of them require tedious calculations within Bayesian
approach, whereas ARTM leads to similar results “in one line”.

In section 5 we combine three regularizers from our pool to build a highly
sparse and well interpretable topic model. We propose to monitor many quality
measures during EM-iterations to choose the regularization path empirically for
a multi-objective topic model. In our experiment we measure sparsity, kernel size,
coherence, purity, and contrast of the topics. We show that ARTM improves all
measures at once almost without any loss of the hold-out perplexity.

In section 6 we discuss advantages and limitations of ARTM.

2 Topic models PLSA and LDA

Let D denote a set (collection) of texts and W denote a set (vocabulary) of all
terms from these texts. Each term can represent a single word as well as a key
phrase. Each document d ∈ D is a sequence of nd terms (w1, . . . , wnd

) from the
vocabulary W . Each term might appear multiple times in the same document.

Assume that each term occurrence in each document refers to some latent topic
from a finite set of topics T . Text collection is considered to be a sample of triples
(wi, di, ti), i = 1, . . . , n drawn independently from a discrete distribution p(w, d, t)
over a finite space W ×D×T . Terms w and documents d are observable variables,
while topics t are latent (hidden) variables. Following the “bag of words” model,
we represent each document by a subset of terms d ⊂ W and the corresponding
integers ndw, which count how many times the term w appears in the document d.

Conditional independence is an assumption that each topic generates terms
regardless of the document: p(w | t) = p(w | d, t). According to the law of total
probability and the assumption of conditional independence

p(w | d) =
∑

t∈T

p(t | d) p(w | t). (1)
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The probabilistic model (1) describes how the collection D is generated from
the known distributions p(t | d) and p(w | t). Learning a topic model is an inverse
problem: to find distributions p(t | d) and p(w | t) given a collectionD. This problem
is equivalent to finding an approximate representation of counter matrix

F =
(
p̂wd

)

W×D
, p̂wd = p̂(w | d) = ndw

nd
, (2)

as a product F ≈ ΦΘ of two unknown matrices — the matrix Φ of term probabilities

for the topics and the matrix Θ of topic probabilities for the documents:

Φ = (φwt)W×T , φwt = p(w | t), φt = (φwt)w∈W ;
Θ = (θtd)T×D, θtd = p(t | d), θd = (θtd)t∈T .

(3)

Matrices F , Φ and Θ are stochastic, that is, they have non-negative and normal-
ized columns representing discrete distributions. Usually the number of topics |T |

is much smaller than the collection size |D| and the vocabulary size |W |.
In Probabilistic Latent Semantic Analysis PLSA (Hofmann 1999) the topic

model (1) is learned by log-likelihood maximization with linear constrains:

L(Φ,Θ) = ln
∏

d∈D

∏

w∈d

p(w | d)ndw =
∑

d∈D

∑

w∈d

ndw ln
∑

t∈T

φwtθtd → max
Φ,Θ

; (4)

∑

w∈W

φwt = 1, φwt > 0;
∑

t∈T

θtd = 1, θtd > 0. (5)

Theorem 1 The stationary point of the optimization problem (4), (5) satisfies the

system of equations with auxiliary variables ptdw, nwt, ntd, nt, nd

ptdw =
φwtθtd∑

s∈T φwsθsd
; (6)

φwt =
nwt

nt
, nwt =

∑

d∈D

ndwptdw, nt =
∑

w∈W

nwt; (7)

θtd =
ntd
nd

, ntd =
∑

w∈d

ndwptdw, nd =
∑

t∈T

ntd. (8)

This statement follows from Karush–Kuhn–Tucker conditions. We will prove
a more general theorem in the sequel. The system of equations (6)–(8) can be solved
by various numerical methods. Particularly, the simple-iteration method is equiv-
alent to the EM algorithm, which is typically used in practice.

EM algorithm repeats two steps in a loop.
The expectation step or E-step (6) can be understood as the Bayes’ rule for the

probability distribution p(t | d,w):

ptdw = p(t | d,w) =
p(w, t|d)

p(w|d)
=
p(w|t)p(t|d)

p(w|d)
=

φwtθtd∑

s φwsθsd
. (9)

The value ntdw = ndwptdw estimates how many times the term w appears in
the document d with relation to the topic t.

The maximization step or M-step (7), (8) can therefore be interpreted as fre-
quency estimates for the conditional probabilities φwt and θtd.

Algorithm 2.1 reorganizes EM iterations by incorporating the E-step inside
the M-step. Thus it avoids storage of a three-dimensional array ptdw. Each EM
iteration is a run through the entire collection.
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Algorithm 2.1: The rational EM-algorithm for PLSA.

Input: document collection D, number of topics |T |;
Output: Φ, Θ;

1 initialize vectors φt, θd randomly;
2 repeat

3 zeroize nwt, ntd, nt, nd for all d ∈ D, w ∈ W , t ∈ T ;
4 forall the d ∈ D, w ∈ d do

5 Z :=
∑

t∈T
φwtθtd;

6 forall the t ∈ T : φwtθtd > 0 do

7 increase nwt, ntd, nt, nd by δ = ndwφwtθtd/Z;

8 φwt := nwt/nt for all w ∈ W , t ∈ T ;
9 θtd := ntd/nd for all d ∈ D, t ∈ T ;

10 until Φ and Θ converge;

Equations (6)–(8) can be rewritten in a shorter notation by omitting normal-
ization and using the proportionality sign: ptdw ∝ φwtθtd; φwt ∝ nwt; θtd ∝ ntd.

In Latent Dirichlet Allocation (LDA) parameters Φ,Θ are constrained by an
assumption that vectors φt and θd are drawn from Dirichlet distributions with
hyperparameters β = (βw)w∈W and α = (αt)t∈T respectively (Blei et al 2003).
Learning algorithms for LDA generally fall into two categories — sampling-based
algorithms (Wang 2008) and variational algorithms (Teh et al 2006). In Gibbs
Sampling (LDA-GS) a topic t is sampled from the probability distribution p(t | d,w)
for each term occurrence w = wi, then counters nwt, ntd, nt, nt are increased by 1
(Steyvers and Griffiths 2004). Learning algorithms for LDA can also be considered
as EM-like algorithms with modified M-step (Asuncion et al 2009). The following
is the most simple and frequently used modification:

φwt ∝ nwt + βw, θtd ∝ ntd + αt. (10)

It is generally recognized since the work of Blei et al (2003) that LDA is less
subjected to overfitting than PLSA. Nevertheless, recent experiments show that
the performance of PLSA and LDA differs insignificantly on large text collec-
tions (Masada et al 2008; Wu et al 2010; Lu et al 2011). The reason is that the
optimal values of hyperparameters βw and αt are usually close to zero (Wallach
et al 2009). Therefore they affect only small values nwt and ntd corresponding to
the rare terms of topics and rare topics of documents. Robust variants of PLSA and
LDA models describe rare terms by a separate model component and have nearly
the same performance (Potapenko and Vorontsov 2013). This means that LDA
reduces overfitting only for insignificantly rare terms and topics. Thus overfitting
does not seems to be such a serious problem for probabilistic topic models.

In contrast, the non-uniqueness, which causes the instability of the solution, is a
serious problem. The likelihood (4) depends on the product ΦΘ, which is defined up
to a linear transformation: ΦΘ = (ΦS)(S−1Θ), where Φ′ = ΦS and Θ′ = S−1Θ are
stochastic matrices. The transformation S is not controlled by EM-like algorithms
and may depend on random initialization.

We performed the following experiment on the synthetic data in order to as-
sess the ability of PLSA and LDA to restore true matrices Φ,Θ. The collection
was generated with the parameters |W | = 1000, |D| = 500, |T | = 30, the lengths
of the documents nd ∈ [100,600] were chosen randomly. Columns of the matrices
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Fig. 1 Errors in restoring the matrices Φ, Θ and ΦΘ over hyperparameter β while α = 0.01
is fixed for LDA Gibbs Sampling (left chart) and PLSA-EM (right chart).
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Fig. 2 Errors in restoring the matrices Φ, Θ and ΦΘ over hyperparameter α while β = 0.01
is fixed for LDA Gibbs Sampling (left chart) and PLSA-EM (right chart).

Φ,Θ were drawn from the symmetric Dirichlet distributions with parameters β, α
respectively. The differences between the restored distributions p̂(i | j) and the syn-
thetic ones p(i | j), j = 1, . . . ,m were measured by the average Hellinger distance
both for the matrices Φ,Θ and for their product:

DΦ = H(Φ̂, Φ); DΘ = H(Θ̂, Θ); DΦΘ = H(Φ̂Θ̂, ΦΘ); (11)

H(p̂, p) =
1

m

m∑

j=1

√

1

2

∑

i

(√

p̂(i | j)−
√

p(i | j)
)2
. (12)

PLSA and LDA turned out to restore the matrices Φ,Θ much worse than their
product, fig. 1, 2. The error depends on the sparsity of the original matrices Φ,Θ.
In our experiments LDA did not perform well even when we used the same hyper-
parameters α, β for synthetic data generation and for LDA-GS algorithm.

These facts show that the Dirichlet distribution is too weak as a regularizer.
More problem-oriented regularizers are needed to formalize additional restrictions
on the matrices Φ,Θ and to ensure uniqueness and stability of the solution. There-
fore our starting point will be the PLSA model, free of regularizers, but not
the LDA model, even though it is more popular in recent research works.
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3 EM-algorithm with additive regularization

Consider r additional objectives Ri(Φ,Θ), i = 1, . . . , r, called regularizers. To max-
imize these objectives together with the likelihood (4) consider their linear com-
bination with nonnegative regularization coefficients τi:

R(Φ,Θ) =
r∑

i=1

τiRi(Φ,Θ), L(Φ,Θ) +R(Φ,Θ) → max
Φ,Θ

. (13)

Topic t is called regular if nwt + φwt
∂R

∂φwt
> 0 for at least one term w ∈W .

If the reverse inequality holds for all w ∈W then topic t is called overregularized.
Document d is called regular if ntd + θtd

∂R
∂θtd

> 0 for at least one topic t ∈ T .
If the reverse inequality holds for all t ∈ T then document d is called overregularized.

Theorem 2 If the function R(Φ,Θ) is continuously differentiable and (Φ,Θ) is the

local maximum of the problem (13), (5), then for any regular topic t and any regular

document d the system of equations holds:

ptdw =
φwtθtd∑

s∈T φwsθsd
; (14)

φwt ∝

(

nwt + φwt
∂R

∂φwt

)

+

; nwt =
∑

d∈D

ndwptdw; (15)

θtd ∝

(

ntd + θtd
∂R

∂θtd

)

+

; ntd =
∑

w∈d

ndwptdw; (16)

where (z)+ = max{z, 0}.

Note 1 If a topic t is overregularized then (15) gives φt = 0. In this case we have
to exclude the topic t from the model. Topic overregularization is a mechanism
that can eliminate irrelevant topics and optimize the number of topics.

Note 2 If a documents d is overregularized then equation (16) gives θd = 0. In this
case we have to exclude the document d from the model. For example, a document
may be too short, or have no relation to the thematics of a given collection.

Note 3 Theorem 1 is a particular case of Theorem 2 at R(Φ,Θ) = 0.

Proof For the local minimum (Φ,Θ) of the problem (13), (5) the Karush–Kuhn–
Tucker (KKT) conditions can be written as follows:

∑

d

ndw
θtd

p(w | d)
+

∂R

∂φwt
= λt − λwt; λwt > 0; λwtφwt = 0, (17)

where λt and λwt are KKT multipliers for normalization and nonnegativity con-
strains respectively. Let us multiply both sides of the first equation by φwt, reveal
the auxiliary variable ptdw from (14) in the left-hand side and sum it over d:

φwtλt =
∑

d

ndw
φwtθtd
p(w | d)

+ φwt
∂R

∂φwt
= nwt + φwt

∂R

∂φwt
. (18)
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An assumption that λt 6 0 contradicts the regularity condition for the topic t.
Then λt > 0, φwt > 0. The left-hand side is nonnegative, thus the right-hand side
is nonnegative too, consequently,

φwtλt =

(

nwt + φwt
∂R

∂φwt

)

+

. (19)

Let us sum both sides of this equation over all w ∈ W :

λt =
∑

w∈W

(

nwt + φwt
∂R

∂φwt

)

+

. (20)

Finally, we obtain (15) by expressing φwt from (19) and (20).
Equations for θtd are derived analogously thus finalizing the proof.

The system of equations (14)–(16) defines a regularized EM-algorithm. It keeps
E-step (6) and redefines M-step by regularized equations (15)–(16). Thus, the
EM-algorithm for learning regularized topic models can be implemented by easy
modification of any EM-like algorithm at hand. Particularly, in Algorithm 2.1 we
are to modify only steps 8 and 9 according to equations (15)–(16).

4 Regularization criteria for topic models

In this section we collect a pool of regularizers that can be used in any combination
or separately. We revise some of well-known topic models that were originally
developed within Bayesian approach. We show that ARTM gives similar or more
general results through a much simpler inference based on Theorem 2.

We will intensively use the Kullback–Leibler divergence (relative entropy)
to measure the difference between multinomial distributions (pi)

n
i=1 and (qi)

n
i=1:

KL(p‖q) ≡ KLi(pi‖qi) =
n∑

i=1

pi ln
pi
qi
. (21)

Recall that the minimization of the KL-divergence is equivalent to maximizing the
likelihood of the model distribution q for the empirical distribution p.

Smoothing regularization and LDA. Let us minimize the KL-divergence between
the distributions φt and a fixed distribution β = (βw)w∈W , and the KL-divergence
between θd and a fixed distribution α = (αt)t∈T :

∑

t∈T

KLw(βw‖φwt) → min
Φ
,

∑

d∈D

KLt(αt‖θtd) → min
Θ

. (22)

After summing these criteria with coefficients β0, α0 and removing constants
we get the regularizer

R(Φ,Θ) = β0
∑

t∈T

∑

w∈W

βw lnφwt + α0

∑

d∈D

∑

t∈T

αt ln θtd → max . (23)

The regularized M-step (15) and (16) gives equations

φwt ∝ nwt + β0βw, θtd ∝ ntd + α0αt, (24)
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which are exactly the same as the M-step (10) in LDA model with hyperparameter
vectors β = β0(βw)w∈W and α = α0(αt)t∈T of the Dirichlet distributions.

The non-Bayesian interpretation of the smoothing regularization in terms of
KL-divergence is simple, natural, and avoids complicated inference.

Sparsing regularization. The opposite regularization strategy is to maximize KL-
divergence between φt, θd and fixed distributions β, α:

R(Φ,Θ) = −β0
∑

t∈T

∑

w∈W

βw lnφwt − α0

∑

d∈D

∑

t∈T

αt ln θtd → max . (25)

For example, to find a sparse distributions φwt with lower entropy we may choose
the uniform distribution βw = 1

|W |
, which is known to have the largest entropy.

The regularized M-step (15) and (16) gives equations that differ from the
smoothing equations in the sign of the parameters β, α:

φwt ∝
(
nwt − β0βw

)

+
, θtd ∝

(
ntd − α0αt

)

+
. (26)

The idea of entropy-based sparsing was originally proposed in the dy-
namic PLSA for video processing to produce sparse distributions of topics over
time (Varadarajan et al 2010). The conflict between Dirichlet prior and spars-
ing assumption leads to sophisticated sparse LDA models (Shashanka et al 2008;
Wang and Blei 2009; Eisenstein et al 2011; Larsson and Ugander 2011; Chien and
Chang 2013). A simple and natural sparsing becomes possible due to abandoning
the Dirichlet prior within ARTM semi-probabilistic regularization framework.

Smoothing regularization for semi-supervised learning. Consider a collection, which is
partially labeled by experts: each document d from a subset D0 ⊆ D is associated
with a subset of topics Td ⊂ T , and each topic t from a subset T0 ⊂ T is associated
with a subset of terms Wt ⊂W . It is usually expected that labeling information
helps to improve the interpretability of topics.

Consider a regularizer that minimizes KL-divergence between φt, θd and uni-
form distributions βwt =

1
|Wt|

[w ∈Wt], αtd = 1
|Td|

[t ∈ Td] respectively:

R(Φ,Θ) = β0
∑

t∈T0

∑

w∈W

βwt lnφwt + α0

∑

d∈D0

∑

t∈T

αtd ln θtd → max . (27)

The regularized M-step (15) and (16) gives another kind of smoothing:

φwt ∝ nwt + β0βwt [t ∈ T0]; (28)

θtd ∝ ntd + α0αtd [d ∈ D0]. (29)

This can be considered as yet another generalization of LDA, in which vectors
β, α are different for the respective distributions φt, θd depending on labeled data.
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Decorrelation of topics. Reducing the overlapping between the topic-word distribu-
tions is known to make the learned topics more interpretable (Tan and Ou 2010).
A regularizer that minimizes covariance between vectors φt,

R(Φ) = −γ
∑

t∈T

∑

s∈T\t

∑

w∈W

φwtφws → max, (30)

leads to the following equation of the M-step:

φwt ∝
(

nwt − γφwt

∑

s∈T\t

φws

)

+
. (31)

From this formula we conclude that for each term w the highest probabili-
ties φwt will increase even further, while small probabilities will decrease from
iteration to iteration, and may eventually turn into zeros. Therefore, this regular-
izer also stimulates sparsity. Besides, it has another useful property, which is to
group stop-words into a separate topic (Tan and Ou 2010).

Covariance regularization for documents. Sometimes we possess information that
some documents are likely to share similar topics. For example, they may fall into
the same category or one document may have a reference or a link to the other.
Making use of this information in terms of the regularizer, we get:

R(Θ) = τ
∑

d,c

ndc
∑

t∈T

θtdθtc → max, (32)

where ndc is the weight of the link between documents d and c. A similar model
LDA-JS by Dietz et al (2007) is based on the minimization of Jensen–Shannon
divergence between θd and θc, rather than on the covariance maximization.

According to (16), the equation for θtd in the M-step turns into

θtd ∝ ntd + τθtd
∑

c∈D

ndcθtc. (33)

This is a kind of smoothing regularizer, which adjusts probabilities θtd so that
they become closer to θtc for all documents c, connected with d.

Correlated Topic Model (CTM) was first introduced by Blei and Lafferty (2007)
to find strong correlations between topics. For example, a document about geology
is more likely to also be about archeology than genetics.

In CTM the correlation between topics is modeled by an assumption that
document vectors θd are generated by logistic normal prior distribution:

θtd =
exp(ηtd)

∑

s∈T exp(ηsd)
; p(ηd |µ,Σ) =

exp
(
− 1

2(ηd − µ)TΣ−1(ηd − µ)
)

(2π)
n

2 |Σ|
1

2

, (34)

where |T |-vector µ and |T | × |T | covariance matrix Σ are parameters of Gaussian
distribution. Document vectors ηd ∈ R

|T | are determined by the corresponding
vectors θd up to an arbitrary document-dependent constant Cd:

ηtd = ln θtd + Cd. (35)
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Initially CTM was developed within Bayesian approach, although Bayesian
inference is complicated by the fact that the logistic normal distribution is not
conjugate to the multinomial. We argue that the very idea of CTM can be alter-
natively implemented and easier understood within ARTM approach.

In terms of ARTM we define a regularizer as a log-likelihood of the logistic
normal model for a sample of the document vectors ηd:

R(Θ) = τ
∑

d∈D

ln p(ηd |µ,Σ) = −
τ

2

∑

d∈D

(ηd − µ)TΣ−1(ηd − µ) + const → max . (36)

According to (16) the equation for θtd in the M-step turns into

θtd ∝
(

ntd − τ
∑

s∈T

Σ̃ts

(
ln θsd − µs

))

+
, (37)

where Σ−1 = (Σ̃ts)T×T is the inverse covariance matrix.
The parameters Σ,µ of Gaussian distribution are assumed to be constant dur-

ing the iteration. Following the idea of block-coordinatewise optimization we esti-
mate them after each run through the collection (in Algorithm 2.1 after step 9):

µ =
1

|D|

∑

d∈D

ln θd; (38)

Σ =
1

|D|

∑

d∈D

(
ln θd − µ)

(
ln θd − µ)T. (39)

Then we invert the covariance matrix and turn insignificant values Σ̃ts into zeros
to get sparse solution and reduce computations in (37). Blei and Lafferty (2007)
propose to use lasso regression for this purpose.

Coherence regularization. A topic is called coherent if its most frequent words typ-
ically appear nearby in the documents — either in the training collection, or in
some external corpus like Wikipedia. An average topic coherence is considered to
be a good interpretability measure of a topic model (Newman et al 2010b).

Let Cwv = p̂(w | v) denote an estimate of the co-occurrence of word pairs
(w, v) ∈W 2. Usually, Cwv is defined as a portion of the documents that contain
both words v and w in a sliding window of ten words.

Let us estimate the conditional probability p(w | t) from φvt = p(v | t) over all
coherent words v using the law of total probability:

p̂(w | t) =
∑

v∈W\w

Cwvφvt =
∑

v∈W\w

Cwvnvt
nt

. (40)

Consider a regularizer which minimizes the weighted sum of KL-divergences
between the empirical distribution p̂(w | t) and the model distribution φwt:

R(Φ) = τ
∑

t∈T

nt
∑

w∈W

p̂(w | t) lnφwt → max . (41)

According to (15) the equation of the M-step turns into

φwt ∝ nwt + τ
∑

v∈W\w

Cwvnvt. (42)



12 Konstantin Vorontsov, Anna Potapenko

The same formula was derived by Mimno et al (2011) for LDAmodel and Gibbs
Sampling algorithm, from more complicated reasoning through a generalized Polya
urn model and a more complex heuristic estimate for Cwv.

Newman et al (2011) propose yet another regularizer:

R(Φ) = τ
∑

t∈T

ln
∑

u,v∈W

Cuvφutφvt → max, (43)

where Cuv = Nuv if PMI(u, v) > 0 and Cuv = 0 otherwise, pointwise mutual infor-

mation PMI(u, v) = ln |D|Nuv

NuNv
depends on document frequencies:Nuv is the number

of documents that contain both words u, v in a sliding window of ten words, Nu is
the number of documents that contain at least one occurrence of the word u.

Thus we conclude that there is no commonly accepted approach to the coher-
ence optimization in the literature. All approaches that we have found so far can
be easily expressed in terms of ARTM without Dirichlet priors.

Document classification. Let C be a finite set of classes. Suppose each document d
is labeled by a subset of classes Cd ⊂ C. The task is to infer a relationship between
classes and topics, to improve a topic model by using labeling information, and
to learn a decision rule, which is able to classify new documents. Common discrim-
inative approaches such as SVM or Logistic Regression usually give unsatisfactory
results on large text collections with a big number of unbalanced and interde-
pendent classes. Probabilistic topic model can benefit in this situation because it
processes all classes simultaneously (Rubin et al 2012).

There are many examples of document labeling in the literature. Classes may
refer to text categories (Rubin et al 2012; Zhou et al 2009), authors (Rosen-Zvi et al
2004), time periods (Cui et al 2011; Varadarajan et al 2010), cited documents (Di-
etz et al 2007), cited authors (Kataria et al 2011), users of documents (Wang
and Blei 2011). More information about special models can be found in the sur-
vey (Daud et al 2010). All these models fall into a small number of types that
can be easily expressed in terms of ARTM. Below we consider a close analog of
Dependency LDA (Rubin et al 2012), one of the most general topic models for
document classification.

We expand the probability space to the set D ×W × T × C and assume that
each term w in a document d is related to both a topic t ∈ T and a class c ∈ C.
To classify documents we model a distribution p(c | d) over classes for each docu-
ment d. We assume that classes of a document are determined by its topics, then
conditional independence p(c | t) = p(c | d, t) holds. This allows us to express p(c | d)
in terms of class probabilities for the topics p(c | t) = ψct and topic probabilities for
the documents p(t | d) = θtd in a way, which is similar to the basic topic model (1):

p(c | d) =
∑

t∈T

ψctθtd. (44)

Thus we introduce a third stochastic matrix of model parameters Ψ = (ψct)C×T .
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Another conditional independence p(w, c | d) = p(w | d) p(c | d) allows to split the
log-likelihood into PLSA term L(Φ,Θ) as in (4) and a regularization term Q(Ψ,Θ):

ln
∏

d∈D

∏

w∈d

p(w, c | d)ndw = L(Φ,Θ) + τQ(Ψ,Θ) → max
Φ,Θ,Ψ

; (45)

Q(Ψ,Θ) =
∑

d∈D

∑

c∈C

mdc ln
∑

t∈T

ψctθtd, (46)

where mdc is the empirical frequency of classes in document d. It can be estimated
via uniform distribution over classes: mdc = nd

[c∈Cd]
|Cd|

. The regularization coeffi-

cient τ may be set to 1 or it may be used to trade-off the document content model
p(w | d) and the document classification model p(c | d). The regularizer Q can be
considered as a minimization of KL-divergence between the probability model of
classification p(c | d) and the empirical class frequency mdc. The problem (45)–
(46) can still be solved with regularized EM-like algorithm due to the following
generalization of Theorem 2.

Theorem 3 If the function R(Φ, Ψ,Θ) of stochastic matrices Φ, Ψ,Θ is continuously

differentiable and (Φ, Ψ,Θ) is the local maximum of L(Φ,Θ) + τQ(Ψ,Θ) +R(Φ,Ψ, Θ)
then for any regular topic t and any regular document d the system of equations holds:

ptdw =
φwtθtd∑

s∈T φwsθsd
; ptdc =

ψctθtd∑

s∈T ψcsθsd
; (47)

φwt ∝

(

nwt + φwt
∂R

∂φwt

)

+

; nwt =
∑

d∈D

ndwptdw; (48)

ψct ∝

(

mct + ψct
∂R

∂ψct

)

+

; mct =
∑

d∈D

mdcptdc; (49)

θtd ∝

(

ntd + τmtd + θtd
∂R

∂θtd

)

+

; ntd =
∑

w∈d

ndwptdw; mtd =
∑

c∈Cd

mdcptdc. (50)

We omit the proof which is analogous to the proof of Theorem 2.
Regularization term R(Φ,Ψ, Θ) can include Dirichlet prior for Ψ , as in Depen-

dency LDA, but sparsing seems to be a more natural choice.
Another useful example of R is label regularization.

Label regularization is known to improve multi-label classification for unbalanced
classes (Mann and McCallum 2007; Rubin et al 2012). We wish the model distri-
bution p(c) to be close to the empirical class frequency p̂c in the training data:

R(Ψ) = ξ
∑

c∈C

p̂c ln p(c) → max, p(c) =
∑

t∈T

ψctp(t), p(t) =
nt
n
, (51)

where ξ is regularization coefficient. The formula for the M-step (49)

ψct ∝ mct + ξp̂c
ψctnt

∑

s∈T ψcsns
(52)

results in a smoothing of distributions ψct proportionally to the frequencies p̂c.
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ΦW×T = ΘT×D =

Fig. 3 The example of sparse matrices Φ and Θ with specific and background topics. Back-
ground topics are shown as two rightmost columns in Φ and two lowest rows in Θ.

5 Combining regularizers for sparsing and improving interpretability

Interpretability of a topic is a poorly formalized requirement. Essentially what it
means is that, provided with the list of the most frequent terms and the most
representative documents of a topic, a human can understand its meaning and
give it an appropriate name. The interpretability is an important property for
information retrieval, systematization and visualization of text collections.

Most of the existing approaches involve human assessment. Newman et al
(2009) ask experts to assess the usefulness of topics by a 3-point scale. Chang
et al (2009) prepare lists of 10 most frequent words for each topic, intruding one
random word into each list. A topic is considered to be interpretable if experts
can correctly identify the intrusion word. Human-based approach is important at
research stage, but it prohibits a fully automatic construction of the topic model.

Coherence is the most popular automatic measure, which is known to correlate
well with human estimates of the interpretability (Newman et al 2010a,b; Mimno
et al 2011). Coherence measures how often the most probable words of the topic
occur nearby in the documents from the underlying collection or from external
polythematic collection such as Wikipedia.

In this paper we suggest another formalization of interpretability, which also
does not require human assessment. We assume that each interpretable topic con-
tains its own lexical kernel — a set of specific terms for a particular domain area,
which have high probability in this topic, and lower probabilities in other topics.
Lexical kernel of the topic should be free of common lexis words, which frequently
occur in many documents. Thus, we want to find matrices Φ and Θ with a sparsity
structure similar to the one displayed in figure 3. To do this we split the set of
topics T into two subsets: domain-specific topics S and background topics B.

Domain-specific topic t ∈ S contains terms of a particular domain area. Domain-
specific distributions p(w | t) are sparse and weakly correlated. Their corresponding
distributions p(d | t) are also sparse, because each domain-specific topic occurs in
a relatively small number of documents.

Background topic t ∈ B contains common lexis words. Background distribu-
tions p(w | t) and p(d | t) are smooth, because background words occur in many
documents. A topic model with background can be considered as a generalization
of robust models, which use only one background distribution (Chemudugunta
et al 2007; Potapenko and Vorontsov 2013).
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Combining sparsing, smoothing, and decorrelation. To obtain the sparsity sructure of
Φ and Θ matrices as shown in figure 3, we propose a combination of five regilarizers:
smoothing of background topics in matrices Φ and Θ, sparsing of domain-specific
topics in matrices Φ and Θ, and decorrelation of domain-specific topics in matrix Φ:

R(Φ,Θ) =− β0
∑

t∈S

∑

w∈W

βw lnφwt − α0

∑

d∈D

∑

t∈S

αt ln θtd

+ β1
∑

t∈B

∑

w∈W

βw lnφwt + α1

∑

d∈D

∑

t∈B

αt ln θtd

− γ
∑

t∈T

∑

s∈T\t

∑

w∈W

φwtφws → max . (53)

We use uniform distribution αt and two types of background distribution βw: either
a uniform distribution, or the term frequency estimates βw = nw/n.

Then we obtain M-step formulas for a combined model from (15) and (16):

φwt ∝
(

nwt − β0 βw[t∈S]
︸ ︷︷ ︸

sparsing
specific
topic

+ β1 βw[t∈B]
︸ ︷︷ ︸

smoothing
background

topic

− γ [t∈S] φwt

∑

s∈S\t

φws

︸ ︷︷ ︸

decorrelation

)

+
; (54)

θtd ∝
(

ntd − α0 αt[t∈S]
︸ ︷︷ ︸

sparsing
specific
topic

+ α1 αt[t∈B]
︸ ︷︷ ︸

smoothing
background

topic

)

+
. (55)

Regularization trajectory. A linear combination of multiple regularizers Ri depends
on a vector of regularization coefficients τ = (τi)

r
i=1, which is hard to optimize.

A similar problem has been efficiently solved in ElasticNet with a regularization
path technique specially developed for a combination of L1 and L2 regulariza-
tion (Friedman et al 2010). In topic modeling a much larger variety of regularizers
is used. Extremely large coefficient may lead to a conflict with other regularizers,
to a slower convergence, or to a degeneration of the model. Conversely, extremely
small coefficient actually disables the regularization. According to the theory of
regularization of ill-posed inverse problems (Tikhonov and Arsenin 1977) we must
reduce the regularization coefficient down to zero during the iterations, in order to
achieve a correct regularized solution. Optimizing the convergence rate is usually
task-dependent and must be controlled manually in the experiment.

Then we define the regularization trajectory as a multidimensional vector τ ,
which is a function of the number of iteration and, possibly, of the model quality
measures. In our experiments we choose the regularization trajectory by analyzing
experimentally how the change of regularization coefficients affects quality mea-
sures of the model during iterations.

Quality measures. Learning a topic model from a text collection can be considered
as a constrained multi-criteria optimization problem. Therefore, the quality of
a topic model should also be measured by a set of criteria. Below we describe a set
of quality measures that we use in our experiments.
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The accuracy of a topic model p(w | d) on the collection D is commonly eval-
uated in terms of perplexity, which is closely related to the likelihood (the lower
perplexity is, the better):

P(D, p) = exp
(

−
1

n
L(Φ,Θ)

)

= exp

(

−
1

n

∑

d∈D

∑

w∈d

ndw ln p(w | d)

)

. (56)

The hold-out perplexity P(D′, pD) of the model pD trained on the collection D
is evaluated on the test set of documents D′ not intersectingD. In our experiments
we split the collection in proportion |D| : |D′| = 9 : 1. Each document d from the
test set is further randomly split into two halves: the first one is used to estimate
parameters θd, and the second one is used in the perplexity evaluation. The terms
in the second halves that did not appear in D are ignored. Parameters φt are
estimated from the training set D.

The sparsity of a model is measured by the ratio of zero elements in matrices Φ
and Θ over domain-specific topics S.

The background ratio is a ratio of background terms over the collection:

B =
1

n

∑

d∈D

∑

w∈d

∑

t∈B

ndwp(t | d,w). (57)

It takes value from 0 to 1. If B is close to 0 then the model does not eliminate
common lexis from domain-specific topics. If B is close to 1 then the model is
degenerated, possibly due to excessive sparsing.

We define the lexical kernel Wt of a topic t as a set of terms that distinguish
the topic t from the other topics: Wt = {w : p(t |w) > δ}. In our experiments we
set δ = 0.25. Then we define a set of measures, which characterize the conformity
of the matrix Φ with the sparse structure shown in fig. 3:

kernel size kert = |Wt|, the reasonable values for it are about |W |
|T |

;

purity purt =
∑

w∈Wt

p(w | t), the higher the better;

contrast cont =
1

|Wt|

∑

w∈Wt

p(t |w), the higher the better.

The coherence of a topic t is defined as the pointwise mutual information aver-
aged over all word pairs from the top-k most probable words of the topic t:

C
k
t =

2

k(k − 1)

k−1∑

i=1

k∑

j=i

PMI(wi, wj), (58)

where wi is the i-th word in the list of φwt, w ∈ W , sorted in descending order.
A typical approach is to calculate the top-10 coherence. In addition, we estimated
the coherence of top-100 words and the coherence of the topic kernel.

Finally, we define the corresponding measures of kernel size, purity, contrast,
and coherence for the topic model by averaging over domain-specific topics t ∈ S.

Text collection. In our experiments we used the NIPS dataset, which contains
|D| = 1566 English articles from the Neural Information Processing Systems con-
ference. The length of the collection in words is n ≈ 2.3 · 106. The vocabulary
size is |W | ≈ 1.3 · 104. We held out |D′| = 174 documents for the testing set.
In the preparation step we used BOW toolkit (McCallum 1996) to perform chang-
ing to low-case, punctuation elimination, and stop-words removal.
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Table 1 Topic models with various combinations of regularizers: smoothing (Sm), spars-
ing (Sp) with uniform (u) or background (b) distribution, and decorrelation (Dc). Quality
measures: P — hold-out perplexity, B — background ratio, SΦ, SΘ — sparsity of matrices
Φ, Θ, con — contrast, pur — purity, ker — kernel size, C ker — kernel coherence, C 10, C 100 —
coherence of top 10 and top 100 words. The best values in each column are bold-emphasized.

Sm Sp Dc P B SΦ SΘ con pur ker C ker C 10 C 100

− − − 1923 0.00 0.000 0.000 0.43 0.14 100 0.84 0.25 0.17
+ − − 1902 0.00 0.000 0.000 0.42 0.12 82 0.93 0.26 0.17

− u − 2114 0.24 0.957 0.867 0.53 0.20 71 0.91 0.25 0.18
− b − 2507 0.51 0.957 0.867 0.46 0.56 151 0.71 0.60 0.58
− − + 2025 0.57 0.561 0.000 0.46 0.38 109 0.82 0.94 0.56
+ u − 1961 0.25 0.957 0.867 0.51 0.20 64 0.97 0.26 0.18
+ b − 2025 0.49 0.957 0.867 0.45 0.52 128 0.77 0.55 0.55
+ − + 1985 0.59 0.582 0.000 0.46 0.39 97 0.87 0.93 0.57
+ u + 2010 0.73 0.980 0.867 0.56 0.73 78 0.94 0.94 0.62
+ b + 2026 0.80 0.979 0.867 0.52 0.89 111 0.81 0.96 0.83

Experimental results. In all experiments within this paragraph the number of iter-
ations was set to 40, and the number of topics was set to |T | = 100 with |B| = 10
background topics.

In table 1 we compare PLSA (first row), LDA (second row) and multiple reg-
ularized topic models. First three columns define a combination of regularizers.
Other columns correspond to the quality measures described above.

We use a regularized EM-algorithm with smoothing (23) for LDA model with
symmetric Dirichlet prior and usually recommended parameters α = 0.5, β = 0.01.

We use a uniform smoothing for background topics with α = 0.8, β = 0.1.

We use a uniform distribution βw = 1
|W | or background distribution βw = nw

n

for sparsing domain-specific topics.

From table 1 we conclude that the combination of sparsing, smoothing and
decorrelation significantly improves all quality measures at once. Sparsing gives
up to 98% zero elements in Φ and 87% zero elements in Θ. Decorrelation im-
proves purity and coherence. Smoothing helps to transfer common lexis words
from domain-specific topics to background topics. A slight loss of the hold-out per-
plexity is consistent with an observation of Chang et al (2009) that models which
achieve better predictive perplexity often have less interpretable latent spaces.

In experiments we use convergence charts to compare different models and to
choose regularization trajectories τ = (α0, α1, β0, β1, γ). These charts give insight
into the effects of each regularizer when it is used alone or in combination with
others. A convergence chart presents each quality measure of the topic model as
a function of the iteration step. For example, in Figure 4 and Figure 5 we compare
two models: grey lines correspond to PLSA model without regularization, and
black lines correspond to ARTM regularized model.

Quality measures are shown along vertical axes in three charts. The upper
chart represents a hold-out perplexity P on the left-hand axis, sparsity SΦ,SΘ

of matrices Φ,Θ and background ratio B on the right-hand axis. The middle chart
represents kernel size (ker) on the left-hand axis, purity (pur) and contrast (con)
on the right-hand axis. The lower chart represents the top10, top100, and kernel
coherences on the left-hand axis.
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Fig. 4 Grey color stands for PLSA; black —
for combined sparsing & smoothing.
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Fig. 5 Grey color stands for PLSA; black —
for sparsing & smoothing & decorrelation.

Figure 4 shows the cumulative effect of sparsing domain-specific topics (with
background distribution βw) and smoothing background topics. We see that PLSA
does not sparse matrices Φ,Θ and gives too low topic purity.

Figure 5 shows that decorrelation augments purity and coherence. Also it moves
common lexis words from the domain-specific topics to the background topics.
As a result, the background ratio reaches almost 80%.

Again, note the important effect of regularization for the ill-posed problem:
some of quality measures may change significantly even after the likelihood con-
verges, either with no change or with a slight increase of the perplexity.

Because of the volume limitations we can not show all the convergence charts
that we have analyzed in our experiments while choosing a satisfactory regular-
ization trajectory. Below we present only our final recommendations.

It is better to enable sparsing after the iterative process entered into conver-
gence stage and it became clear what elements of the matrices Φ,Θ were close to
zero. An earlier or a more abrupt sparsing may lead to an increase of perplexity.
We enabled sparsing at the 10-th iteration and gradually adjusted the regulariza-
tion coefficient to turn into zeros 8% of the non-zero elements in each vector θd
and 10% in each column φt per iteration.

Smoothing of the background topics should better start straight from the first
iteration, with constant regularization coefficients.
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Decorrelation can be activated also from the first iteration, with a maximum
regularization coefficient, which does not yet significantly increase perplexity.
For our collection we chose γ = 2 · 105.

6 Discussion and conclusions

Learning a topic model from text collection is an ill-posed problem of stochas-
tic matrix factorization. It generally has infinitely many solutions, which is why
solutions computed algorithmically are usually unstable and depend on random
initialization. Bayesian regularization in the Latent Dirichlet Allocation does not
cope with this problem, indicating that Dirichlet prior is too weak as a regularizer.
More problem-oriented regularizers are needed to restrict the set of solutions.

In this paper we propose a semi-probabilistic approach named ARTM — Addi-

tive Regularization of Topic Models. It is based on the maximization of the weighted
sum of the log-likelihood and additional regularization criteria. Learning a topic
model is considered as a multi-criteria optimization problem, which then is reduced
to a single-criterion problem via scalarization. To solve the optimization prob-
lem we suggest a general regularized EM-algorithm. Compared to the dominant
Bayesian approach, ARTM avoids excessive probabilistic assumptions, simplifies
inference and allows any combination of regularizers.

From the technological point of view ARTM contributes to develop a library of
unified regularizers, and then to build topic models for various applications simply
by choosing a suitable combination of regularizers from the library.

In this paper we introduced a general framework of ARTM under following
constraints, which could be removed in further research work.

We confined ourselves to a bag-of-words representation of text collection, and
have not considered more sophisticated topic models such as hierarchical, multi-
gram, multilingual, etc. Applying additive regularization to these models will prob-
ably require more efforts.

We have work out only one numerical method — regularized EM-algorithm,
suitable for a broad class of regularizers. Alternative optimization techniques as
well as their convergence and stability have not yet been considered.

Our review of regularizers is far from being complete.

Moreover, we restricted our experimental study to only three regularizers:
sparsing, smoothing, and decorrelation. We argue that this combination improves
the interpretability of topics and therefore it is useful for many topic modeling ap-
plications. Extensive experiments with combinations of a wider set of regularizers
are left beyond the scope of this paper.

Finally, having faced with a problem of regularization trajectory optimization,
we confined to a very simple visual technique for monitoring convergence process
and comparing topic models empirically.

Acknowledgements The work was supported by the Russian Foundation for Basic Research
grants 14-07-00847, 14-07-00908, 14-07-31176 and by the program of the Department of Math-
ematical Sciences of Russian Academy of Sciences “Algebraic and combinatoric methods of
mathematical cybernetics and information systems of new generation”.

We thank Alexander Frey and Maria Ryskina for their help and valuable discussions, and
Vitaly Glushachenkov for his experimental work on synthetic data.



20 Konstantin Vorontsov, Anna Potapenko

References

Asuncion A, Welling M, Smyth P, Teh YW (2009) On smoothing and inference for topic models.
In: Proceedings of the International Conference on Uncertainty in Artificial Intelligence,
pp 27–34

Blei D, Lafferty J (2007) A correlated topic model of Science. Annals of Applied Statistics
1:17–35

Blei DM (2012) Probabilistic topic models. Communications of the ACM 55(4):77–84
Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. Journal of Machine Learning

Research 3:993–1022
Chang J, Gerrish S, Wang C, Boyd-Graber JL, Blei DM (2009) Reading tea leaves: How

humans interpret topic models. In: Neural Information Processing Systems (NIPS), pp
288–296

Chemudugunta C, Smyth P, Steyvers M (2007) Modeling general and specific aspects of doc-
uments with a probabilistic topic model, vol 19, MIT Press, pp 241–248

Chien JT, Chang YL (2013) Bayesian sparse topic model. Journal of Signal Processessing
Systems pp 1–15

Chien JT, Wu MS (2008) Adaptive bayesian latent semantic analysis. IEEE Transactions on
Audio, Speech, and Language Processing 16(1):198–207

Cui W, Liu S, Tan L, Shi C, Song Y, Gao Z, Qu H, Tong X (2011) TextFlow: Towards better
understanding of evolving topics in text. IEEE transactions on visualization and computer
graphics 17(12):2412–2421

Daud A, Li J, Zhou L, Muhammad F (2010) Knowledge discovery through directed proba-
bilistic topic models: a survey. Frontiers of Computer Science in China 4(2):280–301

Dietz L, Bickel S, Scheffer T (2007) Unsupervised prediction of citation influences. In: Pro-
ceedings of the 24th international conference on Machine learning, ACM, New York, NY,
USA, ICML ’07, pp 233–240

Eisenstein J, Ahmed A, Xing EP (2011) Sparse additive generative models of text. In: ICML’11,
pp 1041–1048

Friedman JH, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software 33(1):1–22

Hofmann T (1999) Probabilistic latent semantic indexing. In: Proceedings of the 22nd an-
nual international ACM SIGIR conference on Research and development in information
retrieval, ACM, New York, NY, USA, pp 50–57

Kataria S, Mitra P, Caragea C, Giles CL (2011) Context sensitive topic models for author
influence in document networks. In: Proceedings of the Twenty-Second international joint
conference on Artificial Intelligence — Volume 3, AAAI Press, IJCAI’11, pp 2274–2280

Khalifa O, Corne D, Chantler M, Halley F (2013) Multi-objective topic modelling. In: 7th In-
ternational Conference Evolutionary Multi-Criterion Optimization (EMO 2013), Springer
LNCS, pp 51–65

Larsson MO, Ugander J (2011) A concave regularization technique for sparse mixture models.
In: Shawe-Taylor J, Zemel R, Bartlett P, Pereira F, Weinberger K (eds) Advances in Neural
Information Processing Systems 24, pp 1890–1898

Lu Y, Mei Q, Zhai C (2011) Investigating task performance of probabilistic topic models: an
empirical study of PLSA and LDA. Information Retrieval 14(2):178–203

Mann GS, McCallum A (2007) Simple, robust, scalable semi-supervised learning via expec-
tation regularization. In: Proceedings of the 24th international conference on Machine
learning, ACM, New York, NY, USA, ICML ’07, pp 593–600

Masada T, Kiyasu S, Miyahara S (2008) Comparing LDA with pLSI as a dimensionality reduc-
tion method in document clustering. In: Proceedings of the 3rd International Conference on
Large-scale knowledge resources: construction and application, Springer-Verlag, LKR’08,
pp 13–26

McCallum AK (1996) Bow: A toolkit for statistical language modeling, text retrieval, classifi-
cation and clustering, http://www.cs.cmu.edu/∼mccallum/bow

Mimno D, Wallach HM, Talley E, Leenders M, McCallum A (2011) Optimizing semantic
coherence in topic models. In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing, Association for Computational Linguistics, Stroudsburg,
PA, USA, EMNLP ’11, pp 262–272

Newman D, Karimi S, Cavedon L (2009) External evaluation of topic models. In: Australasian
Document Computing Symposium, pp 11–18



Additive Regularization of Topic Models 21

Newman D, Lau JH, Grieser K, Baldwin T (2010a) Automatic evaluation of topic coherence.
In: Human Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, Association for Computational
Linguistics, Stroudsburg, PA, USA, HLT ’10, pp 100–108

Newman D, Noh Y, Talley E, Karimi S, Baldwin T (2010b) Evaluating topic models for digital
libraries. In: Proceedings of the 10th annual Joint Conference on Digital libraries, ACM,
New York, NY, USA, JCDL ’10, pp 215–224

Newman D, Bonilla EV, Buntine WL (2011) Improving topic coherence with regularized topic
models. In: Shawe-Taylor J, Zemel R, Bartlett P, Pereira F, Weinberger K (eds) Advances
in Neural Information Processing Systems 24, pp 496–504

Potapenko AA, Vorontsov KV (2013) Robust PLSA performs better than LDA. In: 35th Eu-
ropean Conference on Information Retrieval, ECIR-2013, Moscow, Russia, 24-27 March
2013, Lecture Notes in Computer Science (LNCS), Springer Verlag-Germany, pp 784–787

Rosen-Zvi M, Griffiths T, Steyvers M, Smyth P (2004) The author-topic model for authors and
documents. In: Proceedings of the 20th conference on Uncertainty in artificial intelligence,
AUAI Press, Arlington, Virginia, United States, UAI ’04, pp 487–494

Rubin TN, Chambers A, Smyth P, Steyvers M (2012) Statistical topic models for multi-label
document classification. Machine Learning 88(1-2):157–208

Shashanka M, Raj B, Smaragdis P (2008) Sparse overcomplete latent variable decomposition
of counts data. In: Platt JC, Koller D, Singer Y, Roweis S (eds) Advances in Neural
Information Processing Systems, NIPS-2007, MIT Press, Cambridge, MA, pp 1313–1320

Si L, Jin R (2005) Adjusting mixture weights of gaussian mixture model via regularized prob-
abilistic latent semantic analysis. In: Ho TB, Cheung DWL, Liu H (eds) Proceedings of
the Ninth Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD),
Springer, Lecture Notes in Computer Science, vol 3518, pp 622–631

Steyvers M, Griffiths T (2004) Finding scientific topics. Proceedings of the National Academy
of Sciences 101(Suppl. 1):5228–5235

Tan Y, Ou Z (2010) Topic-weak-correlated latent dirichlet allocation. In: 7th International
Symposium Chinese Spoken Language Processing (ISCSLP), pp 224–228

Teh YW, Newman D, Welling M (2006) A collapsed variational bayesian inference algorithm
for latent dirichlet allocation. In: NIPS, pp 1353–1360

Tikhonov AN, Arsenin VY (1977) Solution of ill-posed problems. W. H. Winston, Washington,
DC

Varadarajan J, Emonet R, Odobez JM (2010) A sparsity constraint for topic models — appli-
cation to temporal activity mining. In: NIPS-2010 Workshop on Practical Applications of
Sparse Modeling: Open Issues and New Directions

Wallach H, Mimno D, McCallum A (2009) Rethinking LDA: Why priors matter. In: Bengio Y,
Schuurmans D, Lafferty J, Williams CKI, Culotta A (eds) Advances in Neural Information
Processing Systems 22, pp 1973–1981

Wang C, Blei DM (2009) Decoupling sparsity and smoothness in the discrete hierarchical
dirichlet process. In: NIPS, Curran Associates, Inc., pp 1982–1989

Wang C, Blei DM (2011) Collaborative topic modeling for recommending scientific articles. In:
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM, New York, NY, USA, pp 448–456

Wang Q, Xu J, Li H, Craswell N (2011) Regularized latent semantic indexing. In: SIGIR, pp
685–694

Wang Y (2008) Distributed Gibbs sampling of latent dirichlet allocation: The gritty details
Wu Y, Ding Y, Wang X, Xu J (2010) A comparative study of topic models for topic clustering

of chinese web news. In: Computer Science and Information Technology (ICCSIT), 2010
3rd IEEE International Conference on, vol 5, pp 236–240

Zhou S, Li K, Liu Y (2009) Text categorization based on topic model. International Journal
of Computational Intelligence Systems 2(4):398–409


