OrdRec: An Ordinal Model for Predicting Personalized ltem
Rating Distributions

Yehuda Koren
Yahoo! Research, Haifa
yehuda @yahoo-inc.com

ABSTRACT

We propose a collaborative filtering (CF) recommendation frame-
work, which is based on viewing user feedback on products as or-
dinal, rather than the more common numerical view. This way, we
do not need to interpret each user feedback value as a number, but
only rely on the more relaxed assumption of having an order among
the different feedback ratings. Such an ordinal view frequently pro-
vides a more natural reflection of the user intention when providing
qualitative ratings, allowing users to have different internal scor-
ing scales. Moreover, we can address scenarios where assigning
numerical scores to different types of user feedback would not be
easy. Our approach is based on a pointwise ordinal model, which
allows it to linearly scale with data size. The framework can wrap
most collaborative filtering algorithms, upgrading those algorithms
designed to handle numerical values into being able to handle or-
dinal values. In particular, we demonstrate our framework with
wrapping a leading matrix factorization CF method. A cornerstone
of our method is its ability to predict a full probability distribu-
tion of the expected item ratings, rather than only a single score for
an item. One of the advantages this brings is a novel approach to
estimating the confidence level in each individual prediction. Com-
pared to previous approaches to confidence estimation, ours is more
principled and empirically superior in its accuracy. We demonstrate
the efficacy of the approach on some of the largest publicly avail-
able datasets, the Netflix data, and the Yahoo! Music data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Apps—Data Mining

General Terms
Algorithms

Keywords

recommender systems, collaborative filtering, matrix factorization

1. INTRODUCTION

Collaborative filtering (CF) is a leading approach to building
recommender systems which has gained much popularity recently

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

RecSys’11, October 23-27, 2011, Chicago, Illinois, USA.

Copyright 2011 ACM 978-1-4503-0683-6/11/10 ...$10.00.

117

Joe Sill

Analytics Consultant
joe_sill@yahoo.com

[15]. CF is based on analyzing past interactions between users and
items, and hence can be readily applied in a variety of domains,
without requiring external information about the traits of the rec-
ommended products. Most CF systems view user feedback as nu-
merical scores or as binary scores. Such a view limits the appli-
cability of these systems. While in common star-rating systems
(e.g., when user scores are between 1 star and 5 stars) viewing the
qualitative user feedback as numerical may be intuitive, this is not
always the case. In several common scenarios, there is no direct
link between the user feedback and numerical values, even though
the feedback is richer than a binary “like-vs-dislike” indication.

For example, the user feedback at Yahoo! Movies assumes the
values A+,A,A-,B+,B,....F, having no direct resemblance to nu-
merical or binary values. In some e-commerce systems, user pref-
erences to products are perceived by tracking the various actions
users perform. For example, a user can search and browse a prod-
uct page, which is a weak indication of interest in the product. A
stronger indication would be bookmarking the product or adding
it to a “wish list”. An even stronger indication would be entering
the product to the “shopping cart” or bidding on the product. The
strongest indication would be actually purchasing the product. Cer-
tainly the richness of possible user actions cannot be captured with
a binary indicator. Yet, mapping the user actions into a numerical
scale would not be natural or trivial. Any decision to map the ac-
tions into a numerical scale, e.g. coding “search and browse” as
a 1, bookmarking or wish-listing as 2, etc., would be somewhat
arbitrary. An ordinal scale seems to best fit this case.

Another scenario is when users are asked to enter their feedback
by a comparative ranking of a set of products. Indeed, some studies
argue [2, 6, 17] that humans are more consistent when comparing
products than when giving each of them an absolute score. Again,
the recorded ordinal feedback in such a scenario will have no direct
interpretation in terms of numerical values.

Furthermore, we argue that even when user feedback is related
to absolute numbers, taking the scores as numerical may not reflect
the user intentions well. Different users tend to have different inter-
nal scales. For example, taking star ratings as numeric will put the
same distance between “3 stars” and both “4 stars” and “2 stars”.
However, one user can take “3 stars” as similar to “4 stars”, while
another user strongly relates “3 stars” to low quality, being similar
to “1-2 stars”.

In this work we suggest a novel CF framework, which we dub
OrdRec, motivated by the above discussion and inspired by the
ordinal logistic regression model originally described by McCul-
lagh [10]. The model views user feedback as ordinal. Hence it
only assumes an order among the observed feedback values, but
does not require mapping these values into a numerical scale. Our
framework is based on a pointwise (rather than pairwise) ordinal
approach, letting it scale linearly with data size. The framework



can wrap existing CF methods, and upgrade them into being able
to tackle ordinal feedback. We work with a matrix factorization [9]
CF model known as SVD++ [7], which is among the more accurate
approaches reported in the literature.

An important property of OrdRec is an ability to output a full
probability distribution of the scores rather than a single score,
which provides richer expressive power. For example, one can pre-
dict mean, mode, account for lowest probability of “1 star”, etc. In
particular, confidence levels can be associated with the given pre-
diction. Confidence estimation can have a significant impact on
the end user experience, and allows system designers more flex-
ibility and tools when selecting the items to recommend. Yet, the
topic has so far gathered very limited attention in the literature. The
approach to confidence estimation enabled by OrdRec is both more
principled and empirically more accurate than previous approaches.

In passing, we also suggest a multinomial CF approach based
on matrix factorization, which views ratings as categorical, and can
also predict a full probability distribution of the ratings.

Our methods were extensively evaluated on three large scale data-
sets: the Netflix Prize dataset [3], which has became a standard
benchmark, and two versions of the Yahoo! Music dataset, which
underlie the KDD-Cup’2011 contest. To summarize, the main con-
tributions of this work are:

1. A CF framework treating user ratings as ordinal rather than
numerical, thereby being directly applicable to a wider vari-
ety of systems.

. Flexibly associating different semantics to the available scores,
depending on the user.

3. Predicting the full probability distribution of the scores rather
than a single score.

. Enhancing and integrating with many known CF methods.

. New methods and evaluation metrics for assessing confidence
in recommendations.

2. BASIC NOTIONS

We are given ratings for m users and n items. We reserve special
indexing letters to distinguish users from items: for users u, v, and
for items ¢, j. In addition, we index rating values by 7. A rating
rv; indicates the rating which user v gave item 4, where high val-
ues mean stronger preference. The ratings themselves are ordinal
and need not be numbers. Thus, we assume a total order between
the possible rating values. For example, values can range from 1
star (indicating no interest) to 5 stars (indicating a strong interest).
We denote the number of distinct ratings by S. For notational sim-
plicity, we will refer to the ratings as 1,2,...,S. In practice, how-
ever, they could actually be letter grades or any other ordered set
of preference levels. Usually the data is sparse and the vast major-
ity of ratings are unknown. We distinguish predicted ratings from
known ones, by using the notation 7,,; for the predicted value of
rui. The set of items rated by user u (in the train set) is denoted by
R(u). The overall training set, containing all rated user-item pairs

(u, 4,7 = ry;) is denoted by R. The test set is denoted by R.

3. BACKGROUND AND RELATED WORK

A popular approach to building recommender systems is Col-
laborative Filtering (CF), a term coined by the developers of the
first recommender system - Tapestry [5]. CF relies only on past
user behavior, e.g., their previous transactions or product ratings. It
analyzes relationships between users and interdependencies among
products, in order to identify new user-item associations. Latent

118

factor CF models explain ratings by characterizing both items and
users in terms of factors inferred from the pattern of ratings. One of
the most successful realizations of latent factor models is based on
matrix factorization, e.g., [9]. In particular, we will employ a vari-
ant of matrix factorization, known as SVD++, which was demon-
strated to yield superior accuracy by also accounting for the more
implicit information represented by the set of items which were
rated (regardless of their rating value) [7]. The model predicts the
rating by user u of item ¢ as follows:

Fui = p+bi+bu+af [put R@IT2 Y 2
JER(w)

6]

Here, both users and items are mapped into a joint latent fac-
tor space of dimensionality f, such that ratings are modeled as in-
ner products in that space. Accordingly, each user u is associated
with a vector p,, € RY and each item i is associated with a vector
¢ € RY. A second set of item factors relates an item i to a factor
vector ; € Rf. These secondary item factors are used to char-
acterize users based on the set of items that they rated. The scalar
L is a constant denoting the overall average rating. The scalar pa-
rameters b, and b; are user and item biases. Model parameters are
learned by stochastic gradient descent on the regularized squared
error function; see [7] for full details.

The OrdRec model presented in this paper wraps SVD++ in an
outer framework, which turns its predictions into a probability dis-
tribution over an ordered set of values. This framework is inspired
by the ordinal linear regression model first described by McCullagh
in [10]. In ordinal linear regression, we want to predict a response
variable taking on one of a discrete set of S ordered values (e.g.
the letter grades students receive in a class) based on various other
indepenent variables (e.g. demographic information about the stu-
dents). Let x be the vector of independent variables and ~y, repre-
sent the probability that the response variable is less than or equal
to s. Then the ordinal regression model is

log(vs/(1—1s)) = ts — w'z ?
where w is a vector of coefficients associated with the independent
variables, just as in ordinary least-squares linear regression. The
values t1 < t2 < --- < ts—1 can be thought of as thresholds
or cutpoints determining when each of the ordered response vari-
able levels becomes probable. The design of the OrdRec model
arises out of the observation that the dot product of w and x in the
ordinal linear regression equation can be replaced by a CF model
that outputs a real-valued quantity, thereby yielding a CF model
which predicts the full probability distribution over an ordered set
of ratings. In addition, we suggest a new way for representing and
learning the non-decreasing threshold variables together with the
model parameters.

Two recent papers have successfully combined matrix factoriza-
tion with ordinal modeling of user ratings, although in each case
the implementation was fairly complex. In [13], a hierarchical
Bayesian model for ordinal matrix factorization is presented. A
collection of prior distributions over various model parameters is
required and the model is trained using Gibbs sampling. The au-
thors obtained substantial accuracy improvements over standard
matrix factorization techniques on the Netflix dataset. In [18], or-
dinal matrix factorization is a special case of an elaborate model
which combines collaborative filtering and content-based metadata
information and which offers the possibility of incremental, on-
line training. Inference is achieved via a combination of varia-
tional message passing and expectation propagation. In contrast,
the work presented here as the OrdRec model represents a straight-



forward technique based on the widely-used stochastic gradient de-
scent technique for training a matrix factorization model. The fa-
miliarity and ease of implementation it offers may make it an at-
tractive option to many practitioners. More importantly, neither of
the previous versions of ordinal matrix factorization investigates
the accuracy of the confidence estimates implied by the probability
distributions predicted by the models. Here, the OrdRec model is
shown to produce better indicators of its own accuracy than pre-
viously used collaborative filtering confidence estimators, allowing
decisions to be made based on the degree of confidence the model
has in its prediction.

The recent BPR model [14] has treated ratings as ordinal. That
interesting work deals with binary feedback scenario (like tag rec-
ommendations, where user feedback is implicit and binary), while
we treat a setup where the user can express multiple rating levels,
and we emphasize prediction of the probability distribution over
these levels for each user-item pair. Another important distinction
between the approaches is that we use an efficient point-wise ap-
proach to rankings, whereas BPR uses a pairwise approach, which
is computationally intensive and hard to scale.

Several other papers have utilized ordinal modeling in the con-
text of recommendation systems, although none of these other mod-
els combine a true ordinal treatment of user feedback with matrix
factorization. In [12], the authors present their model as capable
of modeling ordinal data, but the structure of the model is same as
the structure of a multi-class classification model. Thus, the model
does not take advantage of the known ordering of the ratings, and
the authors acknowledge that the model is overparametrized for or-
dinal problems. In [19], a Gaussian process-based system for su-
pervised learning of user preferences based on content-based item
features is presented where the preference functions to be learned
for a set of users are modeled jointly in a hierarchical Bayesian
framework. In [4], a small-scale collaborative filtering experiment
is presented where collaborative filtering is treated within the frame-
work of standard supervised learning for the purpose of predicting
the movie preferences of a set of users. Each movie is represented
as an input vector with the ratings of users as the input variables,
and various ad-hoc strategies are used to fill in the missing ratings.

In addition to the previous work on ordinal CF models, there are
other examples of CF models which produce a probability distribu-
tion over the set of ratings. One previous work that reports scaling
to large datasets while treating ratings as categorical and predict-
ing the full probability distribution of ratings is based on a neural
network model known as Restricted Boltzmann Machines (RBM)
[16]. In this work we suggest a faster and more accurate matrix
factorization-related alternative to RBM, which also takes ratings
as categorical and predicts their full probability distribution.

Quite surprisingly, there has only been a small amount of pre-
vious work on computing and using confidence levels of recom-
mendations; two such works are [1, 11]. A shared disadvantage of
these approaches is that (1) they are non-personalized; and (2) they
are not derived from the properties of the prediction algorithms, but
rather rely on independent user and item data for estimating confi-
dence. On the other hand, we will propose a method for estimating
recommendation confidence which depends on the actual user and
item and on the the specific recommendation method used. A more
detailed comparison is presented in Sec. 7.

4. THE ORDREC MODEL

The OrdRec framework works together with an internal model
for producing user-item scores, which will be converted into a prob-
ability distribution over the ordinal set of ratings. Henceforth, we
denote such an internal scoring mechanism by y.,;. In our case, we

119

employ the SVD++ algorithm (1), so that

_1
yui:bi+bu+QiT pu‘i“R(u)‘ 2 Z Zj
JER(u)

3)

In general, any other rating predictor could serve for defining
Yui, including those whose parameters are fixed and need not be
learned. However, when desiring to keep the ordinal nature of the
method, we would encourage limiting the choices of y,; to those
formulas that do not treat given ratings as numbers. (For instance, if
one employs OrdRec with an item-item method, it would be more
sensible to take item-item similarities as rank correlations rather
than as Pearson correlations.) Our choice (3) certainly obeys this
criterion.

We introduce S — 1 ordered thresholds, associated with each of
the rating values besides the last one

t1 <tz <--- < ts—1

“4)

Only the first threshold ¢ is actually a parameter in our model.
The other thresholds are represented by encoding their non-negative
gaps, thereby enforcing the order of the thresholds. To this end, we
introduce another set of parameters 31, . .., Ss—2 such that

tr41 = tr + exp(Br) r=1,...,8§ -2 (5)

Let us denote by © all model parameters, that is the biases and
factors participating in (3) and t¢1, 51, . .., Bs—2. Given these pa-
rameters, we model the process of generating an obsereved rating
as the following random process. First a random score z,; is gen-
erated from a normal distribution centered at the internal score yy;

(©)

Then the observed ordinal rating corresponds to the threshold bracket
where the random score falls, yielding the probability distribution

Rui ™ N(in7 1)

P(rui = TI@) = P(t7'71 < Zuwi < tr) (7)
with the convention tg = —oo and ts = oo. Thus
P(Tui < 7”‘9) = P(zuz < tr) = q)(t1 - yui) (8)

where & is the cumulative normal distribution function. In practice
we replace ¢ with the more convenient logistic function such that

P(rui <70) =1/ (1 4 exp(yui — tr)) ©
Thus, the probability of observing rating r,; = 7 is
P(rui =7r|0) = P(rui < 7r|O) — P(re; <r—1|0)  (10)
The log likelihood of observing the training set given O is
L(R)= > logP(ry =r|0©) (an

(u,i,r)ER

Learning proceeds by stochastic gradient ascent on L(R). Given
a training example (u, 4, ) we update each individual parameter 6
by

A= (810gP(7a'u0,- =r|O)

_ o Ui
M) = Pl = 110)

. (P(rm < r|©)(1 — P(rui < r|@))w
Otr—1 = yui)

—P(rui <7 = 10)(1 = Plrui < —1|0)) =7,

— )\6'>
(12)

where 7 is the learning rate and ) is the regularization rate.



The OrdRec model gives us the flexibility to define a separate set
of thresholds per user or per item. In our setting, the thresholds are
user-specific. This allows the model to express the unique rating
scale of each user. Hence, for each user u we define a set of thresh-
olds t7 < t§ < --- < t§_;, which are based on user-specific
BY, ..., B%_o. Acordingly, we replace (9) with

P(rui <7|0) =1/ (L+exp(yui = 1)) (13)

The rest of the derivation is left intact. Since our thresholds are
user-specific, we no longer need to employ user biases (b,,) in the
definition of y.; (3).

Similarly, we could work with thresholds depending on both
users and items ¢1"* < 57" < -+ < tg", by defining

th =t fexp(Br+ ) r=1,...,8-2 (14

Or alternatively
ol =" + exp(By) + exp(Br)

We leave exploring such user-item combined threshold schemes to
future work.

r=1,...,8—2 (15)

4.1 Ranking items for a user

OrdRec predicts a full probability distribution over ratings, rather
than the common prediction of single rating value. Thus, OrdRec
provides a richer output, which goes beyond describing only the
average rating or the most likely rating. This can have an impact
on system design, e.g., by letting certain aspects of the system be
more conservative (avoiding high probability of the lowest rating)
or more daring (caring mostly about the probability of the highest
rating). Another advantage of predicting a full probability distribu-
tion is an ability to assess the confidence in predictions, to which
we dedicate Sec. 7.

Here, we would like to discuss ways to rank products for a user
given their predicted rating distributions. When the ratings are nu-
merical, the predictions can get ranked by their associated mean or
median. However, for the more general case, where ratings need
not be numbers, computing statistics like mean would no longer
be plausible. For example, we may need to decide preference or-
der between a product with probability 3/4 to be rated “A+” and a
probability 1/4 to be rated “F”, and a product with a probability 1
of being rated “C”. Hence we devise a general data-driven method
for ranking the items considered for a user.

Let us formally cast the problem as a learning-to-rank task. Given
an OrdRec model parameterized by ©, a user u and two items ¢ and
4§, we define the vector AP, (i, j) € RS such that AP, (i, 5)[r] =
P(ryi =7|©) — P(ry; =r|0)forr=1,...,S8

We include in a training set 7 all ordered item pairs together
with their predicted rating distribution differential

T:{(i,j,A)l’f‘ui >Tuj7A:APu(i7j)} (16)

We would like to learn a linear map w € R that maximizes the
well ordering of items through the function

> IwTA>0) (17)

(4,5,0)ET

F(T|w) =

We approximate the step function I with the logistic function o'(z) =
1/(1 + exp(—z)), and maximize the continuous function

> ow'A) (18)

(4,5,A)€T

F(Tw) =

The weight vector w is learned through stochastic gradient as-
cent. Given w, we transform any predicted rating distribution into

a number, which allows us to rank all the items for a given user.
In our tests, with datasets where ratings are numeric, ranking items
by optimizing F' provides results as good (in term of F or equiva-
lently in terms of the AUC measure) as ranking them by their ex-
pected rating score, with the advantage of being able to handle also
datasets where ratings are not numeric.

5. A MULTINOMIAL FACTOR MODEL

We would like to compare the OrdRec model against an alter-
native model that can also: (1) deal with non-numerical scores;
(2) predict a full probability distribution of scores for each user-
item pair. One such alternative model, which is reported to scale
to the large datasets we experiment with, is the aforementioned
RBM model [16]. However, in our experiments RBM proved to
be fairly slow to train and lagged in its accuracy behind the ma-
trix factorization-based methods; see Sec. 6 Hence we would like
to suggest a matrix factorization-based method, which like RBM
models a multinomial distribution over categorical scores, while
offering improved speed and accuracy over RBM. We now turn to
describe this method, which we dub Multinomial Matrix Factoriza-
tion, or in short MultiMF.

As with OrdRec, we use MultiMF with an SVD++ underlying
model, which our experiments showed to be effective. However,
one can use the same framework with other models.

For each score r we define:

T
1 .
Zai = P O+ | pu+ RW)ITE Y @ | @ (19)
JER(u)
So far, the difference from the SVD++ model (1) is the usage of
score-dependent biases (b, b; € R), and a score-dependent item
factor vector (q] € RY). Now, the probability of observing r,; = r
follows the multinomial distribution
exp(zyi)

oy exp(2])
where © denotes all model parameters (user and item factors and

biases). We would like to maximize the log likelihood of the train-
ing data given ©

P(ryi =1|0©) = (20)

LR)= Y logP(rui=r|©) @1

(u,i,7)ER

Learning proceeds by stochastic gradient ascent on £L(R). Given
a training example (u, ) with r,; = k we update each individual
parameter 6 by

AO =g (alog P(gg =rle) _ /\9) -

0%y o ozl
"(ae —ZP(TM—H@)OQ—)\@) (22)

r’'=1

where 7 is the learning rate, and A is the regularization rate.

This concludes our description of MultiMF. Before turning to the
empirical study, we would like to mention two disadvantages that
approaches like MultiMF or RBM have in comparison to OrdRec.

1. MultiMF and RBM model user ratings as categorical, which
is often a less realistic assumption than the ordinal assump-
tion by OrdRec. For example, the categorical representation
misses the fact that a “5 star” rating is more similar to a “4
star” rating than to a “1 star” rating.



2. Unlike OrdRec, MultiMF and RBM require a separate item
factor vector for each score. Hence their space complexity is
Q(S- f-n), having a multiplicative dependency in three quan-
tities: number of distinct scores, factorization dimension and
number of items. For the Netflix dataset, where number of
items (17,770) is much lower than the number of users, and
there are just 5 distinct scores, such a complexity might not
be restrictive. However, as we move to datasets with a larger
number of items, it might get more prohibitive. For exam-
ple, as we will see in Sec. 6, the Yahoo! Music dataset has
624,961 items, and 11 different scores, where the item fac-
tors will start consuming a significant amount of memory,
limiting their maximal possible dimensionality.

6. EMPIRICAL STUDY

6.1 Datasets description

We evaluated OrdRec on some of the largest publicly available
user rating datasets. First is the Netflix dataset [3], which was sub-
ject to extensive research as part of Netflix Prize contest. The other
twin datasets, denoted by Y!Music-I and Y!Music-II are based on
user ratings on Yahoo! Music. Ratings were given to musical
entities of four different types: tracks, albums, artists, and gen-
res. The larger of the two, Y!Music-II, is the subject of the KDD-
Cup’11 contest. The Y!Music-I dataset was constructed similarly
to Y!Music-I1, but on a disjoint user set of half the size.

All three datasets are split into train, validation and test sets.
Some of their basic statistics are given in Table 1. Number of rat-
ings range from 103,297,638 for the Netflix dataset to 262,810,175
for the Y!Music-II dataset. The Y!Music datasets are characterized
by having a much larger number of items than the Netflix dataset
(624,961 vs. 17,770), reflecting the fact that there are many more
musical tracks than movies. In terms of number of distinct rat-
ings, the Netflix dataset has five such values (1-star to 5-stars),
while the Y!Music datasets have 11 distinct values (0,1....,10).!
We plot the scores distribution of the three datasets in Fig. 1. In-
terestingly, while the Netflix dataset is unimodal, with most rat-
ings concentrated around high values, the Y!Music datasets are bi-
modal, with distribution peaking around the very high (9) and very
low (0) scores.

All results are reported on the test sets, which were excluded
from the training process. For the Netflix dataset we followed the
common practice of including the validation set in the training set,
when predicting the test set, which is known to significantly im-
prove test results. However, we did not follow the same practice at
the Y!Music datasets, where the validation set was always excluded
from the train set.

In both datasets the representation of each user in the test and
validation sets is bounded to a few ratings at most (hence, no bias
towards heavy raters). For example, in the Y!Music datasets each
user has exactly 4 ratings in the validation set and 6 ratings in the
test set (the latest ratings of each user).

The validation set was used for setting the parameters of the eval-
uated algorithms, including: learning rate (a.k.a., step-size), regu-
larization rate (a.k.a., weight-decay), and number of iterations over
the training set. We have used a different learning rate and regular-
ization rate for each type of parameter. For example, the learning
rate used for item factors is not the same as the learning rate used
for user factors. In order to set these values, we have performed a
grid search on each pair of learning and regularization rates (both
belonging to the same type of parameter), while picking the values
yielding best results on the validation set.

In the original data about 2.2% of the ratings were lying in-
between 0,1,...,10, and we rounded those to their closest integer.

121

6.2 Evaluation metrics

We use two evaluation metrics for comparing the performance
of different algorithms. First, we use the root mean squared error
(RMSE), which is the standard metric on the Netflix dataset, and is
often favorable thanks to its elegance and mathematical tractability

RMSER) = — 5 (fui —1)? (23)

IR

Despite its merits, RMSE can be quite detached from item rank-
ing experience, which is often the ultimate goal of a recommender
system. This is because a perfectly ranked solution can score ar-
bitrarily badly on an RMSE scale by having scores on the wrong
scale, e.g., out of bounds, or just very close to each other. Quite sur-
prisingly, the other direction is also partially true. Decent solutions
in RMSE terms can contain no personalization power ranking-wise.
For example, on the Netflix dataset a predictor explaining only rat-
ing biases could get RMSE as low as 0.9278 [8], which is a signifi-
cant improvement over the RMSE=0.9514 baseline set by Netflix’s
commercial system [3]. Nonetheless, such a solution, which is
based on only explaining biases, is meaningless ranking-wise. All
user-dependent biases play no role when ranking items for a single
user, while the item-related biases are not personalized. Thus, it
will yield the same item ranking for all users.

The RMSE metric has another issue, particularly important in
our context: it assumes numerical rating values. Thus, it shares all
the discussed disadvantages of such an assumption. First, it cannot
express rating scales which vary among different users. Second, it
cannot be applied at cases where ratings are ordinal. Thus, besides
using RMSE we also employ a ranking-oriented metric, which is
free of the aforementioned issues.

Given a test set R, we define the number of concordant pairs for
user u by counting those ranked correctly by rating predictor 7.

(24)

(u,i,r)ER

ne = [{(4,7) | Pus > Puj and ru; > 745 }]

Similarly, we count the discordant pairs for user u, which are mis-
ranked by 7.

(25)

Summing over all users we define n. = > n¢ and ng =
>~ Ma- The quality metric we use measures the proportion of well
ranked items pairs, denoted by FCP (for Fraction of Concordant
Pairs)

ng = {(4,7) | Fui > Fuj and rui < T}

e
Ne + N4
a measure that generalizes the known AUC metric into non-binary
ordered outcomes. The number of ordered pairs in each of the test
sets is given in the rightmost column of Table 1.

6.3 Results

We compared OrdRec with the followings methods: (1) SVD++
[7], which represents a leading RMSE-oriented method; (2) RBM
[16], which is aimed at likelihood maximization and can work with
categorical scores; (3) MultiMF (Sec. 5) having properties simi-
lar to RBM, but with improved performance. Results on the three
datasets are reported in Tables 2—4.

Results on the Netflix Prize place OrdRec as the leader both in
terms of RMSE and in terms of FCP (where it is in a virtual tie
with SVD++). It is notable that OrdRec outperforms SVD++ in
RMSE-terms, despite the fact that only SVD++ is aiming at op-
timizing the RMSE measure. The strong performance of OrdRec
may be attributed to its better ability to model ordinal semantics of
user ratings. As for the other two algorithms, MultiMF yields re-
sults significantly better than RBM, despite the two sharing related

FCP = (26)



Ratings distribution; Netflix dataset

Ratings distribution; Y!Music-I dataset

Ratings distribution; Y!Music-II dataset

35%

1 2 3 4 5

35%

Figure 1: Histograms of ratings distributions for the three datasets

#of ordered test
Dataset number of users number of items [Trainl |Validationl |Testl pairs (n. + nq)
Netflix 480,189 17,770 99,072,112 1,408,395 2,817,131 4,879,515
Y!Music-I 500,269 445,440 123,318,314 2,001,076 3,001,614 3,357,977
Y!Music-II 1,000,990 624,961 252,800,275 4,003,960 6,005,940 6,644,664
Table 1: Properties of the three datasets used in our study
RMSE
Method f=50 f =100 f =200 dataset, it is not surprising that it achieves the best RMSE on at least
SVD++ .8952 .8924 .8911 one of the datasets, given the fact that SVD++ is the only method
RBM 9147 9063 9023 directly trained to minimize RMSE. The reader should note that
1(\)/[;331;?? gggi gg;g gggg RMSE values on the Y!Music datasets are significantly greater than
: : : those reported for the Netflix dataset. This is mostly explained by
Method P SOFCPf —100 f =200 the more'ext.ended rating range at .the Y!Music datasets (0-10 vs.
SVD++ TA6% A A6%  T454% | 1-5), which is expected to proportlonallyllpcrease RMSE by 10/4.
RBM 72.98%  73.57%  73.86% However, the FCP scores are not as sensitive to rating scale. The
MultiMF  74.06% 74.17% 74.25% OrdRec model consistently outperforms the rest in terms of FCP,
OrdRec  74.36% 74.50% 74.54% indicating that it is capable of better ranking items for a user. This

Table 2: Performance on the Netflix test set of the different
models under different dimensionalities. Results are measured
by RMSE (lower is better) and by FCP (higher is better).

modeling assumptions. For all algorithms, performance improves
as dimensionality is increasing.

RMSE
Method f=50 f=100 f =200
SVD++ 24427 2.4430 2.4403
RBM 2.8294  2.8534 2.8373
MultiMF 24932 2.4925 2.4916
OrdRec 24808  2.4730 2.4669
FCP
Method f=50 f=100 f =200
SVD++ T7218%  T2719%  72.80%
RBM 64.21% 63.07%  63.05%
MultiMF  72.67%  72.67%  72.69%
OrdRec  73.65% 73.85% 73.99%

Table 3: Performance on the Y/Music-I test set of the different
models under different dimensionalities. Results are measured
by RMSE (lower is better) and by FCP (higher is better).

RMSE
Method f=50 f=100 f =200
SVD++ 24369  2.4347 2.4334
MultiMF  2.4823 2.4848 2.4868
OrdRec 24786  2.4708 2.4660
FCP
Method f=50 f=100 f =200
SVD++ 72.59%  12.42%  72.13%
MultiMF  73.01%  73.03%  72.99%
OrdRec  73.63% 73.83%  73.98%

Table 4: Performance on the Y!Music-I1I test set of the different
models under different dimensionalities. Results are measured
by RMSE (lower is better) and by FCP (higher is better).
Moving on to the two Y!Music datasets, we observe similar re-
sults on the two. SVD++ consistently yields the best results RMSE-
wise. Although SVD++ did not have the best RMSE on the Netflix

122

may reflect the benefit of better modeling of the semantics of user
feedback. The RBM model produced inferior results on Y!Music-
L. Given its slow running time, we did not complete its runs on the
Y !Music-II dataset.

Note that only SVD++ directly aims at minimizing RMSE, so
measuring accuracy by the same RMSE metric would not be a neu-
tral judging criterion here. Therefore we tend to view performance
under the FCP metric (which none of the evaluated methods di-
rectly aims at) as more representative of differences in user experi-
ence. This places OrdRec as the top performer among evaluated al-
gorithms across all datasets. However, we would like to emphasize
that the added predictive performance is not the main motivation
behind OrdRec, but rather its ability to apply to cases where ratings
are ordinal scores, where SVD++ and the likes cannot be applied.
Also, we view the ability of OrdRec to yield probabilistic ratings
as a helpful feature going beyond the scope of the evaluation study
here, as will be discussed in Sec. 7.

Finally we report training times of the different methods on the
largest dataset — Y!Music-II. All methods were implemented in
C++, with a similar degree of optimization and ran on an HP DL160
G6, 2xXeon X5650 2.67GHz machine. Running times heavily de-
pend on platform and implementation, so they should be only taken
as relative. The times are reported in Table 5. While time per itera-
tion is linear in input size for all methods, times differ significantly
across methods. SVD++, which does not require expensive expo-
nentiation operations, is much faster than the rest. On the other
hand, RBM is the slowest, and also requires many more iterations
to converge.

Method #iterations =50 =100 =200
SVD++ 10 0:02:44  0:04:52  0:11:34
RBM 150 0:31:58 00:49:29 1:27:34
MultiMF 11 0:29:39  0:41:33 1:11:17
OrdRec 25 0:14:31  0:17:10  0:22:55
Table 5: Training times (h:mm:ss) per iteration on the

Y!Music-II dataset for the different methods.



7. ESTIMATION OF RECOMMENDATION
CONFIDENCE

A recommender system has varying levels of confidence (or, cer-
tainty) in the different recommendations it provides. Accordingly,
McNee et al. [11] suggested adding a confidence level indicator to
the GUI of a recommendation system, as a way of improving user
trust in the system and altering user behavior. Even when not di-
rectly exposed to end users, confidence measurement bears impact
on the internal working of the system. For example, when picking
among several items with the same expected rating, the system can
favor the item for which the confidence in the prediction is great-
est. Additionally, the system can combine different recommenda-
tion techniques based on the confidence each has when predicting
a particular user-item pair.

Adomavicius et al. [1] propose confidence measures which are
based on item or user rating variance, while treating the recommen-
dation algorithm as a “black box”. This is based on the observation
that recommendations tend to be more accurate for users and items
exhibiting lower rating variance. Similarly, recommendation algo-
rithms are expected to be more accurate for items and users associ-
ated with many ratings. However, such static metrics are not fully
satisfying. User-dependent metrics fail to be applicable to ranking
items for the same user, a high-priority goal of any recommenda-
tion system. Item-dependent metrics are not personalized, and will
generate low confidence assessments for the same items (usually
the controversial and less popular) equally for all users. Further-
more, assessing confidence without regards to the inner workings
of the prediction algorithm is likely to overlook some valuable in-
formation. Certainly, such assessments would not be helpful for
combining different recommendation algorithms based on differ-
ing confidence values.

Methods like OrdRec, which predict a full distribution of ratings,
allow a more principled approach to confidence estimation. For
each user-item pair, we associate confidence level with the amount
of concentration of the rating probabilities. This way, we can em-
ploy metrics like the standard deviation, entropy, or Gini impurity
associated with the predicted rating distribution of the actual user-
item pair. The resulting confidence metric is personal, being de-
pendent on both user and item, together with a dependency on the
inner workings of the algorithm used.

In order to assess whether the predicted rating distribution of the
OrdRec technique is helpful in estimating the level of confidence
in the predictions, we formulate confidence estimation as a binary
classification problem. We wish to predict whether the model’s pre-
dicted rating is within one rating level of the true rating. For these
purposes, the model’s predicted rating is taken to be the expected
value of the predicted rating distribution. Using logistic regression,
we trained “confidence classifers” to predict if the model’s error is
larger than 1 rating level. For example, in the Netflix dataset, if the
model’s prediction is 3.5 stars and the true rating is 4 stars, then the
model is within 1 rating level, whereas if the true rating is 5 stars,
then it is not.

We ran experiments on both the Netflix dataset and the Y !Music-
I dataset, in both cases using the Test sets, which the OrdRec model
had not been trained on. This out-of-sample data formed the full
dataset on which the confidence classifiers were trained and tested.
The classifiers were trained on a randomly-chosen two-thirds of the
data and tested on the remaining one-third. Overall, 22.7% of the
Netflix data points and 46.8% of the Y !Music-I data points had an
error magnitude of more than 1 rating.

To measure how much value the OrdRec predicted rating dis-
tribution adds to confidence estimation, we first obtained results
when using only traditional indicators of confidence used in previ-

123

ous work, such as user and item rating standard deviation or num-
ber of user and item ratings. Classifiers were trained using each of
a variety of different features, both individually and in conjunction
with each other.

Tables 6 and 7 show the results on the Netflix and Y!Music-I
datasets, respectively. The user and item support (number of user
and item ratings) and the standard deviation of the user and item
ratings are referred to collectively in the table as the traditional
features. A classifier using all 4 of these traditional features was
trained and tested in order to see the best accuracy that could be
achieved without any of the novel features derived from OrdRec.
All features listed in the table starting with “OrdRec” (e.g. Or-
dRec stdev) refer to features extracted from the OrdRec model’s
predicted rating distribution. To determine the best possible perfor-
mance overall, a classifier with all features—both traditional and
OrdRec-derived—was also trained.

OrdRec stdev is simply the standard deviation of the predicted
rating distribution. OrdRec max rating prob is the largest proba-
bility for any single rating in the predicted distribution. OrdRec
entropy is the well-known entropy of a probability distribution,
— >, Pslog(Ps). Gini impurity is defined as 1 — > _ Ps Ps.

We report the performance of the confidence classifiers based
on both AUC and the mean log-likelihood. The Area Under the
ROC Curve (AUC) measures the probability that a positive exam-
ple is scored higher than a negative example. Hence, in our case it
measures how well each predictor orders the points from most con-
fident to least confident. Higher AUC values are desired, as they
indicate a higher fraction of well-ordered pairs. Note that AUC is
independent of the threshold chosen for determining which of the
two classes is to be predicted.

Logistic regression classifiers output a probability for each class
and therefore can be evaluated in terms of mean log-likelihood on
the test set. For perspective, on the Netflix dataset the trivial base-
line log-likelihood achieved by always predicting the frequency
of the more common class (aka, a constant classifier) is -0.536,
whereas for the Y!Music-I dataset it is -0.691.

The results clearly indicate that the information derived from the
OrdRec predicted rating distribution is more valuable than the tra-
ditional features. On the Netflix dataset, the test log-likelihood
using all traditional features combined is -0.514 and the AUC is
0.645, whereas adding the OrdRec-derived features boosts the re-
sults to Log-Likelihood=-0.485 and AUC=0.708. In fact, each sin-
gle OrdRec-derived feature outperforms the combination of the 4
traditional features, with best results for OrdRec stdev and then Or-
dRec entropy.

Similarly on the Y!Music-I dataset, the best that can be achieved
with traditional features is Log-Likelihood=-0.632 and AUC=0.723,
whereas when the OrdRec-derived features are also used, the re-
sults improve to Log-Likelihood=-0.463 and AUC=0.862. Again,
each individual OrdRec-derived feature already significantly out-
performs the combination of the 4 traditional features, now with
OrdRec entropy yielding best results followed by OrdRec stdev.

Confidence experiments conducted using the MultiMF model are
omitted for the sake of brevity, but follow a similar pattern, with the
features derived from the model’s predicted probability distribution
being more valuable than the traditional features.

It is interesting to note that the AUC and the percentage im-
provement over the trivial baseline is significantly larger for the
Y !Music-I dataset. This is not surprising in light of Figure 1, which
shows that the ratings for the Y!Music-I dataset are much more bi-
modal than for the Netflix dataset. The Y!Music-I dataset likely
provides richer information for the sake of learning which scenar-
ios are associated with high uncertainty.



Feature(s)

| Test Log-Likelihood | AUC

constant classifier -0.536 0.500
user support -0.534 0.556
stdev user ratings -0.521 0.619
item support -0.536 0.515
stdev item ratings -0.530 0.576
All traditional features -0.514 0.645
OrdRec stdev -0.490 0.698
OrdRec max rating prob -0.502 0.674
OrdRec entropy -0.494 0.692
OrdRec Gini impurity -0.498 0.691
[ All features [ -0.485 [ 0.708 ]

Table 6: Confidence estimation results on the Netflix dataset
(higher values are better)

[ Feature(s) | Test Log-Likelihood | AUC |
constant classifier -0.691 0.500
user support -0.689 0.620
stdev user ratings -0.638 0.723
item support -0.679 0.642
stdev item ratings -0.690 0.531
All traditional features -0.632 0.723
OrdRec stdev -0.543 0.837
OrdRec max rating prob -0.554 0.828
OrdRec entropy -0.537 0.842
OrdRec Gini impurity -0.538 0.835

[ All features [ -0.463 [0.862 ]

Table 7: Confidence estimation results on the Y!Music-I dataset
(higher values are better)

8.  CONCLUSIONS

The ratings users supply to a recommender system can come in
many different forms, including thumbs-up/down, like-votes, stars,
numerical scores, or A-to-F grades. In addition, users generate
more implicit feedback indicating different levels of interest in a
product, depending on the actions they take. An example of such
a range of possible actions, with a roughly increasing order of sig-
nificance is: browsing, tagging, saving, adding to cart, bidding and
actually buying.

Most recommender systems treat user input as numeric or binary,
which is usually convenient to model and compute with. However,
the numeric view might be too strict and would not naturally apply
at all cases.

We advocate taking user feedback as ordinal, a view unifying all
feedback examples given above. The ordinal view relaxes the nu-
merical view to the proper extent, allowing it to deal with all usual
kinds of user feedback, without assuming an over-relaxed approach
representing user feedback as categorical, which would discard the
internal structure of the feedback. Another merit of the ordinal
view, which applies even at cases where feedback can be naturally
mapped to numbers, is that it allows expressing the fact that differ-
ent users have distinct internal scales for their qualitative ratings.

This motivates the OrdRec model, which treats user ratings as
ordinal. Our empirical study shows that OrdRec performs favor-
ably on datasets where traditional methods taking numerical ratings
can be applied. OrdRec employs a point-wise approach to ordinal
modeling, letting its training time scale linearly with dataset size.
Indeed, we demonstrated it with some of the largest publicly avail-
able datasets containing 100s of millions of ratings. Yet, we should
mention that efficient methods considering ratings as numbers will
train considerably faster in practice, so we would not dismiss taking
the numerical view altogether.

There are various ways to extend the OrdRec method. For ex-
ample, it is known that integrating additional signals can vastly im-
prove recommendation quality. This way, temporal signals or item

124

attributes for rarely rated items can be introduced into OrdRec in
ways we leave to future work.

9. REFERENCES

[1] G. Adomavicius, S. Kamireddy and Y. Kwon. Towards More
Confident Recommendations: Improving Recommender
Systems Using Filtering Approach Based on Rating Variance
Proc. 17th Workshop on Information Technology and
Systems (WITS’07), 2007.
S. Agarwal, J. Wills, L. Cayton, G. Lanckriet, D. Kriegman,
and S. Belongie. Generalized Non-metric Multidimensional
Scaling. AISTATS, San Juan, Puerto Rico, 2007.
J. Bennett and S. Lanning. The Netflix Prize. Proc. KDD
Cup and Workshop, 2007.
[4] W. Chu and Z. Gharamani. Gaussian Processes for Ordinal
Regression J. Mach. Learn. Res 6, 1019-1041, 2005.
D. Goldberg, D. Nichols, B. M. Oki and D. Terry. Using
Collaborative Filtering to Weave an Information Tapestry.
Communications of the ACM 35:12, 61-70, 1992.
[6] M. Kendall and K. D. Gibbons. Rank Correlation Methods.
Oxford University Press, 1990.
Y. Koren. Factorization Meets the Neighborhood: a
Multifaceted Collaborative Filtering Model. Proc. 14th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (KDD’08), pp. 426-434, 2008.
Y. Koren. The BellKor Solution to the Netflix Grand Prize.
2009.
Y. Koren, R. Bell and C. Volinsky. Matrix Factorization
Techniques for Recommender Systems. IEEE Computer
42:8, 30-37, 2009.
P. McCullagh. Regression Models for Ordinal Data (with
Discussion). Journal of the Royal Statistical Society, Series B
42:109-142, 1980.
S.M. McNee, S.K. Lam, C. Guetzlaff, J.A. Konstan and J.
Riedl. Confidence Displays and Training in Recommender
Systems. Proc. Conference on Human-Computer Interaction
(INTERACT ’03), 176-183, 2003.
A. Menon, C. Elkan. A Log-Linear Model with Latent
Features for Dyadic Prediction. Proc. IEEE International
Conference on Data Mining (ICDM’10), 2010.
U. Paquet, B. Thomson and O. Winther. Large-Scale Ordinal
Collaborative Filtering. 1st Workshop on Mining the Future
Internet, Future Internet Symposium, 2010.
S. Rendle, C. Freudenthaler, Z. Gantner and L.
Schmidt-Thieme. BPR: Bayesian Personalized Ranking from
Implicit Feedback. Proc.25th Conference on Uncertainty in
Artificial Intelligence (UAI’09), 2009.
[15] F. Ricci, L. Rokach, B. Shapira, and P.B. Kantor.
Recommender Systems Handbook. Springer 2010.
R. Salakhutdinov, A. Mnih and G. Hinton. Restricted
Boltzmann Machines for collaborative filtering. Proc. 24th
International Conference on Machine Learning (ICML’07),
pp. 791-798, 2007.
[17] M. Schultz and T. Joachims. Learning a distance metric from
relative comparisons. Neural Information Processing
Systems (NIPS’04), 2004.
D. Stern, R. Herbrich and T. Graepel. Matchbox: Large Scale
Bayesian Recommendations. Proc. 18th International World
Wide Web Conference (WWW’09), 2009.
S. Yu, K. Yu, V. Tresp and H.P Kriegel. Collaborative
Ordinal Regression Proc. 23rd International Conference on
Machine Learning (ICML’06), 1089-1096,2006.

2

—

3

—

(5

—

[7

—

[8

—_—

[9

—

(10]

(11]

[12]

[13]

[14]

[16]

(18]

[19]





