МОМО-16. Домашняя работа 1

Срок сдачи: 12 сентября 2016, 10:30

- 1 Пусть $x^* \in \mathbb{R}^n$ точка локального минимума функции $f: \mathbb{R}^n \to \mathbb{R}$, т. е. найдется r > 0, такое что для всех $x \in \mathbb{R}^n$, $\|x x^*\| < r$, выполняется $f(x) \ge f(x^*)$. Докажите, что если функция f дифференцируема в точке x^* , то необходимо выполняется условие оптимальности первого порядка: $\nabla f(x^*) = 0$.
- **2** Рассмотрим непрерывно дифференцируемую функцию $f: \mathbb{R}^n \to \mathbb{R}$, градиент которой удовлетворяет условию Липшица с константой L > 0, т. е. для всех $x, y \in \mathbb{R}^n$ выполняется

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|.$$

Докажите, что в этом случае справедлива следующая оценка на погрешность линейной аппроксимации: для всех $x,y\in\mathbb{R}^n$ верно

$$|f(y) - f(x) - \nabla f(x)^{\mathsf{T}} (y - x)| \le \frac{L}{2} ||y - x||^2.$$

Указание: Воспользуйтесь формулой Ньютона-Лейбница: для всех $x,y\in\mathbb{R}^n$ справедливо

$$f(y) - f(x) = \int_0^1 \nabla f(x + t(y - x))^\top (y - x) dt.$$

- **3** Определите скорость сходимости следующих последовательностей $(k \ge 1)$:
 - (a) $r_k = (0.5)^{k^2}$
 - (b) $r_k = 1/\sqrt{k}$
 - (c) $r_k = 1/k^k$
 - (d) $r_k = \begin{cases} \left(\frac{1}{4}\right)^{2^k}, & k \text{ четное}, \\ \frac{r_{k-1}}{k}, & k \text{ нечетное}. \end{cases}$
 - (e) $(r_k) = (1, \frac{1}{4}, \frac{1}{2}, \frac{1}{8}, \frac{1}{4}, \frac{1}{16}, \frac{1}{8}, \dots)$

Примечание: Для суперлинейно-сходящихся последовательностей необходимо дополнительно выяснить, имеет ли место квадратичная сходимость.

- 4 Рассмотрим последовательность $(r_k)_{k\geq 0}$ из положительных чисел $(r_k>0)$. Известно, что $r_{k+1}\leq Cr_k^2$ для всех $k\geq 0$ и некоторой константы $0< C<\infty$. При каких условиях на C и r_0 можно утверждать, что $r_k\to 0$? Какова при этом скорость сходимости?
- **5** Вычислить производные $Df(x)[\Delta x]$ (а также градиенты $\nabla f(x)$ для случаев с $f(x) \in \mathbb{R}$):
 - (a) $f(x) = ||x||_2^3 \equiv (x^{\top} x)^{3/2}, \quad x \in \mathbb{R}^n$
 - (b) $f(X) = \text{Tr}(AX^{-1}B), \quad X \in \mathbb{R}^{n \times n}$
 - (c) $f(X) = \text{Det}(X) \operatorname{Tr}(AX^{-1}B), \quad X \in \mathbb{R}^{n \times n}$
 - (d) $f(x) = xx^{\top}, \quad x \in \mathbb{R}^n$
 - (e) $f(x) = \text{Det}(2I + xx^{\top}), \quad x \in \mathbb{R}^n$

Указание: Используйте следующие формулы:

$$D(X^{-1})[\Delta X] = -X^{-1}(\Delta X)X^{-1}$$
$$D(\text{Det}(X))[\Delta X] = \text{Det}(X)\operatorname{Tr}(X^{-1}(\Delta X))$$