## List of primitive functions

| Description                   | In      | N in | Out | N out | Comm | Param |
|-------------------------------|---------|------|-----|-------|------|-------|
| Nominal to binary             | nom     | 1    | bin | 1–4   | -    | Yes   |
| Ordinal to binary             | ord     | 1    | bin | 1–4   | -    | Yes   |
| Linear to linear segments     | lin     | 1    | lin | 1–4   | -    | Yes   |
| Linear segments to binary     | lin     | 1    | bin | 1–4   | -    | Yes   |
| Get one column of n-matrix    | bin     | 1-4  | bin | 1     | -    | Yes   |
| Conjunction                   | bin     | 2-6  | bin | 1     | Yes  | -     |
| Disjunction                   | bin     | 2–6  | bin | 1     | Yes  | -     |
| Negate binary                 | bin     | 1    | bin | 1     | -    | -     |
| Logarithm                     | lin     | 1    | lin | 1     | -    | -     |
| Hyperbolic tangent sigmiod    | lin     | 1    | lin | 1     | -    | -     |
| Logistic sigmoid              | lin     | 1    | lin | 1     | -    | -     |
| Sum                           | lin     | 2-3  | lin | 1     | Yes  | -     |
| Difference                    | lin     | 2    | lin | 1     | No   | -     |
| Multiplication                | lin,bin | 2-3  | lin | 1     | Yes  | -     |
| Division                      | lin     | 2    | lin | 1     | No   | -     |
| Inverse                       | lin     | 1    | lin | 1     | -    | -     |
| Polynomial transformation     | lin     | 1    | lin | 1     | -    | Yes   |
| Radial basis function         | lin     | 1    | lin | 1     | -    | Yes   |
| Monomials: $x\sqrt{x}$ , etc. | lin     | 1    | lin | 1     | -    | -     |

### Feature generation

### There given

- the measured features  $\Xi = \{\xi\}$ ,
- the expert-given primitive functions  $G = \{g(\mathbf{b}, \xi)\}$ ,

$$g: \xi \mapsto x$$
;

- the generation rules:  $\mathcal{G} \supset G$ , where the superposition  $g_k \circ g_l \in \mathcal{G}$  w.r.t. numbers and types of the input and output arguments;
- the simplification rules:  $g_u$  is not in  $\mathcal{G}$ , if there exist a rule

$$r: g_u \mapsto g_v \in \mathcal{G}$$
.

#### The result is

the set of the features  $X = \{\mathbf{x}_1, \dots, \mathbf{x}_i, \dots, \mathbf{x}_n\}.$ 

The number of features exceeds the number of clients!

### **Examples of generated features**

- Frac(Period of residence, Undeclared income)
- Frac(Seg(Period of employment), Term of contract)
- And(Income confirmation, Bank account)
- Times(Seg(Score hour), Frac(Seg(Period of employment), Salary))

# Feature generation with symbolic regression

- Select random nodes in two features,
- 2 exchange the corresponded subtrees,
- 3 modify the function at a random node for another one from the primitive set.

Any modification must result an admissible superposition.



### Feature generation with polynomials

- 1. Consider cartesian product  $G \times \Xi$  of the set of non-generated variables  $\Xi$  the primitives G. Denote by  $a_{\iota}$  the superpositions  $g_{\nu}(\xi_{u})$
- 2. Product superpositions  $a_{\iota}$  no more than P times

$$a_{\iota} = g_{\nu}(\xi_{u}),$$
 where the index  $\iota = (\nu - 1)U + u$ 

and

$$x_j = \prod \underbrace{a_{\iota_1} \dots a_{\iota_p}}_{p \; \; \text{times}}, \quad \text{where} \;\; \iota \in \{1, \dots, UV\}, \;\; p \in \{1, \dots, P\}.$$

In the other words

$$\xi_u \xrightarrow{g_v} g_v(\xi_u) \equiv a_\iota \xrightarrow{\prod^\rho} x_j, \qquad j \in \mathcal{J}.$$

Consider the linear models as the polynomial with a monomial  $a_{\iota}=g_{\nu}(\xi_{u})$ 

$$f(\mathbf{w},\mathbf{x}) = \sum_{\iota=1}^{UV} w_{\iota} a_{\iota} + \sum_{\iota=1}^{UV} \sum_{\kappa=1}^{UV} w_{\iota\kappa} a_{\iota} a_{\kappa} + \sum_{\iota=1}^{UV} \sum_{\kappa=1}^{UV} \sum_{\tau=1}^{UV} w_{\iota\kappa\tau} a_{\iota} a_{\kappa} a_{\tau} + \cdots$$

# Set of the primitive functions *G*

Let  $G = \{g_1, \dots, g_l | g = g(\mathbf{b}, \cdot, \dots, \cdot)\}$  such that there are given

- the function  $g:(\mathbf{b},x)\mapsto x'$ ,
- its parameters **b** (the empty set is allowed),
- number of arguments v(g) of the function g and the order of the arguments (zero arguments is allowed),
- domain dom(g) and codomain cod(g).

Consider the model  $f(\mathbf{w}, \mathbf{x})$  as a superposition

$$f(\mathbf{w}, \mathbf{x}) = (g_{i(1)} \circ \cdots \circ g_{i(K)})(\mathbf{x}), \text{ where } \mathbf{w} = [\mathbf{b}_{i(1)}^\mathsf{T}, \dots, \mathbf{b}_{i(K)}^\mathsf{T}]^\mathsf{T}.$$

# The admissible superposition f

is the superposition, which satisfies

$$cod(g_{i(k+1)}) \subseteq dom(g_{i(k)})$$
, for any  $k = 1, ..., K - 1$ .

# The tree $\Gamma_f$ corresponds to the superposition f

- The vertex  $V_i$  corresponds to the primitive function  $g_{s(i)}$ .
- The number of outgoing nodes from the vertex  $V_i$  equal the number of arguments of  $v(g_{s(i)})$ .
- The order of the outgoing nodes from the vertex V<sub>i</sub> equals the order of the arguments of g<sub>s(i)</sub>.
- The leaves of the tree  $\Gamma_f$  corresponds to the independent variables  $x_i$  and constants; they are treated as the primitives  $g(\emptyset)$ .



The tree for the superposition  $\sin(\ln x_1) + \frac{x_2^3}{2}$ 

### The structural density and depth

### The superposition depth d(f) is

maximum depth of the tree  $\Gamma_f$ , number of the nodes V from the root to the most distanced leaf.

### The superposition complexity C(f) is

the number of all admissible subtrees of the tree  $\Gamma_f$ .



#### Generation of nonlinear models

Given:  $G = \{g_u, h_v | u \in \mathcal{U}, v \in \mathcal{V}\}$  is a set of the primitive functions of one and two arguments,  $\mathbf{x} = \{x_j | j \in \mathcal{J}\}$  — independent variables.

Step 1: 
$$\mathcal{F}_1 = \left\{ f_s^{(1)} \right\} = \{ g_u(x_j) \} \cup \{ h_v(x_j, x_k) \},$$
  
 $k \in \mathcal{J}, \ s \in \{ 1, \dots, |\mathcal{U}| \cdot |\mathcal{J}| + |\mathcal{V}| \cdot |\mathcal{J}|^2 \}.$ 

Step k:

(Gen) Append to  $\mathcal{F}$  the set

$$\mathcal{F}^{(k)} = \left\{ f_s^{(k)} \right\} = \left\{ g_u \left( f_{s'}^{(k-1)} \right) \right\} \cup \left\{ h_v \left( f_{s''}^{(k-1)}, f_{s'''}^{(k-1)} \right) \right\},\,$$

(Rem) which does not contain the superpositions, isomorphic to  $g_u\left(f_s^{(k)}\right)$  and  $h_v\left(f_s^{(k)},f_{s'}^{(k)}\right)$  form the sets  $\mathcal{F}^{(k)}\ldots\mathcal{F}^{(1)}$ .

### Structural parameters and model selection

Exhaustive search in the set of the generalized linear models

$$\mu(y) = w_0 + \alpha_1 w_1 x_1 + \alpha_2 w_2 x_2 + \ldots + \alpha_R w_R x_R.$$

Here  $\alpha \in \{0,1\}$  is the structural parameter.

Find a model defined by the set  $A \subseteq \mathcal{J}$ :

| $\alpha_1$ | $\alpha_2$ | <br>$\alpha_{ \mathcal{J} }$ |
|------------|------------|------------------------------|
| 1          | 0          | <br>0                        |
| 0          | 1          | <br>0                        |
|            |            | <br>                         |
| 1          | 1          | <br>1                        |

### Structural parameters and model selection

Exhaustive search in the set of the generalized linear models

$$\mu(y) = w_0 + \alpha_1 w_1 x_1 + \alpha_2 w_2 x_2 + \ldots + \alpha_R w_R x_R.$$

Here  $\alpha \in \{0,1\}$  is the structural parameter.

Find a model defined by the set  $A \subseteq \mathcal{J}$ :

| $\alpha_1$ | $\alpha_2$ | <br>$\alpha_{ \mathcal{J} }$ |
|------------|------------|------------------------------|
| 1          | 0          | <br>0                        |
| 0          | 1          | <br>0                        |
|            |            | <br>                         |
| 1          | 1          | <br>1                        |

## Discrete genetic algorithm for feature selection (simple ver.)

- **1** There are set of binary vectors  $\{\mathbf{a}_1, \dots, \mathbf{a}_P\}$ ,  $\mathbf{a} \in \{0, 1\}^n$ ;
- 2 get two vectors  $\mathbf{a}_p, \mathbf{a}_q, p, q \in \{1, \dots, P\}$ ;
- **3** chose random number  $\nu \in \{1, \dots, n-1\}$ ;
- 4 split both vectors and change their parts:

$$[a_{p,1},\ldots,a_{p,\nu},a_{q,\nu+1},\ldots,a_{q,n}] \rightarrow \mathbf{a'}_p,$$

$$[a_{q,1},\ldots,a_{q,\nu},a_{p,\nu+1},\ldots,a_{p,n}]\to {\bf a'}_q;$$

- **5** choose random numbers  $\eta_1, \ldots, \eta_Q \in \{1, \ldots, n\}$ ;
- **6** invert positions  $\eta_1, \ldots, \eta_Q$  of the vectors  $\mathbf{a'}_p, \mathbf{a'}_q$ ;
- $\mathbf{7}$  repeat items 2-6 P/2 times;
- 8 evaluate the obtained models.

Repeat R times; here P, Q, R are the parameters of the algorithm and n is the number of the corresponding model features.

## Discrete genetic algorithm for grouping

- **1** There are set of binary vectors  $\{\mathbf{a}_1,\ldots,\mathbf{a}_P\}$ ,  $\mathbf{a}\in\{1,\ldots,k\}^n$ ;
- 2 get two vectors  $\mathbf{a}_p, \mathbf{a}_q, p, q \in \{1, \dots, P\}$ ;
- **3** chose random number  $\nu \in \{1, \dots, n-1\}$ ;
- 4 split both vectors and change their parts:

$$[a_{p,1},\ldots,a_{p,\nu},a_{q,\nu+1},\ldots,a_{q,n}] o \mathbf{a'}_p,$$
  
 $[a_{q,1},\ldots,a_{q,\nu},a_{p,\nu+1},\ldots,a_{p,n}] o \mathbf{a'}_q;$ 

- **5** choose random numbers  $\eta_1, \ldots, \eta_Q \in \{1, \ldots, n\}$ ;
- **6** replace values in positions  $\eta_1, \ldots, \eta_Q$  of the vectors  $\mathbf{a'}_p, \mathbf{a'}_q$  for random values from  $\{1, \ldots, k\}$ ;
- $\bigcirc$  repeat items 2-6 P/2 times;
- 8 evaluate the obtained models.

Repeat R times; here P, Q, R are the parameters of the algorithm and k is desired number of categories.