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We give a concentration inequality involving a family of independent random permutations,
which is useful for analysing certain randomized methods for graph colouring.

1. Introduction and main result

In this paper we present an extended version of a concentration inequality based on the
work of Talagrand [7], which concerns a family of independent random permutations.
One particular use is for analysing randomized methods for graph colouring that involve
randomly relabelling the colours used in different parts of the graph: see [5], and see
Section 3 below, where we discuss part of the analysis of such a method.

We now introduce the main result, Theorem 1.1 (though, for example, Theorem 2.1
may be of independent interest). Theorem 1.1 concerns the concentration of a real-valued
random variable Z = h(Y) about its median, where the random vector Y has independent
coordinates that are either real-valued random variables or random permutations, and
the function h satisfies certain conditions, for example that swapping any two elements in
one of the permutations can change the value of h by at most ¢. Now for the details.

Given a finite non-empty set S, we may specify a permutation ¢ on § by the vector
(a(i) 1 i € §). Let Sym(S) denote the set of all | S|! permutations ¢ of S. Let (By, Ba,...) be a
finite family of finite non-empty sets, and let G denote the product [, Sym(By). (We should
perhaps say explicitly that the family is (Bi,...,B,) for some n, and G = [Tie; Sym(B):
however, we choose to avoid introducing this extra piece of notation, since the results do
not depend on n.) Let n = (n1,72,...) be a family of independent random permutations,
where 7, €y Sym(Bi) for each k. This notation is used to mean that the random
permutation 7y is uniformly distributed over the set Sym(Byg). Thus 7 €y G.

Let X = (X, X3,...) be a finite family of independent random variables, where the
random variable X; takes values in a set Q;. Thus X takes values in the set & = [ 195
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Assume that X and 7 are independent. Let Q = Q' x G, so that the random variable
Y = (X, n) takes values in Q.

Let ¢ and r be positive constants, and suppose that the nonnegative real-valued function
h on Q satisfies the following three conditions for each (x,0) € Q.

e Changing the value of a coordinate x; can change the value of h(x, o) by at most 2c,

e Swapping any two elements in any o} can change the value of h(x, s) by at most c.

e If h(x,0) = s, then, in order to show that k(x, o) > s, we need specify only at most rs
coordinates of (x,s). In other words, if h(x, o) = s, then there is a set of at most rs
coordinates, such that i(x’, ¢’) = s for any (¥, o') € Q, which agrees with (x,0) on these
coordinates,

Finally, let m be a median of the random variable Z —= n(Y). The following result is
typically used with ¢ and r small, say 1 or 2, to show that Z is concentrated around its
median m: see Section 3 below.

Theorem 1.1. For each t > 0,

£2
= < — o || .
P(Z m -+ 1) Zexp( 161‘cz(m+t)) (1.1)
and
£2
P(Z <m—1) < Zexp( 16_——’.sz) (1.2}

The relationship between this result and earlier work is discussed briefly in the first
two paragraphs of the next section, when we sketch the main steps 1 the proof. The two
inequalities (1.1) and (1.2) combine immediately to show that, for each 0 < ¢ < m,

P(lZ —m| = 1) < 4exp (— (1.3)

2
32rc2m)'
It follows from these results that the mean E[Z] is close to the median m. Indeed, if ¢ and
r are constants then |E[Z] —m| is O(,/m) as m — oo, for example by [4, Lemma 4.6], and
thus Z is also concentrated around its mean.

The comments above may suggest that, for typical problems, the bounds for deviations
above and below the median are fairly similar, and that the mean and the median tend
to be fairly interchangeable. We need to be more careful if we allow a ‘bad set’ or ‘failure
set’, where the conditions on the function h may fail; see Section 4 below.

2. Further results and proofs

We prove Theorem 1.1 above in three main steps. Theorem 5.1 of Talagrand [7] concerns a
single random permutation uniformly distributed over the set of all permutations of a set.
Our first step is to give an extension, Theorem 2.1 below, of this result. The proof is similar
to the proof of Theorem 5.1 in [7], but avoids the awkward ‘double induction’ there.
Theorem 4.1.1 of Talagrand [7] concerns independent random variables, and has proved
to be the one of Talagrand’s inequalities which is the most useful in discrete mathematics
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and theoretical computer science: see, for example, [4, 6]. Our second step is to use this
theorem and the method of proof of Theorem 2.1 to yield a common extension of these
two theorems, Theorem 2.7 below. Then, from a corollary to this last result we deduce
Theorem 1.1 above, following the treatment of a similar result (Theorem 4.3) in [4] (see
also [6]).

In order to prove these results, we first need to recall and adapt some definitions and
notation from [7]. Let I be a finite non-empty set. Consider a vector x = (x; : i € I)
and a non-empty set 4 in a product space Q = [];o; Qi We let U(A4,x) be the set of all
binary vectors m such that, starting from x, we may reach a vector y € 4 by changing
only coordinates X; such that u; = 1 (and not necessarily changing all of them). Thus 1 is
always in U(A4,x), and 0 € U(4, x) if and only if x € 4. Let V(4,x) be the convex hull
of the set U(A,x). The norm |Ix| of x is (Z,.xiz)m. Talagrand’s convex distance dr(A,x)
between A and x is given by

dp(A,x) = min{|lvl: v € V(4,x)}. (2.1}

There is an alternative equivalent definition of the convex distance. For a nonnegative
unit n-vector o = (o : i € I), the oa-Hamming distance dy(A,x) is the minimum over all
vectors y € A of Y {e; : yi # xi}. Then ([7], or see [4, Lemma 4.10}), for any non-empty
set A =,

dr(4,x) = sup dy(4, x), (2.2)

where the supremum (maximum) is over all nonnegative unit vectors a. We shall also use
the function f defined by

fl4,x) = dr(4,%)* (2.3)

Let By U B, U - be a partition of a finite non-empty set S. Let us call the direct
product G of the symmetric groups Sym(B)), Sym(B>),... a product group of permutations
on S (acting in the obvious way). (In Representation Theory, such a group is called a
Young subgroup of permutations.) Recall that a permutation o on S is specified by the
vector (o(i) : i € 8). Thus (as sets of vectors) we have G = [1. Sym(Bx). Given = € G,
let 7, denote the restriction (z(i) : i € Bx) of n to By. Then 7 €y G if and only if
i, 7,... are independent and each m;, €y Sym(By). The next result extends Theorem 5.1
of Talagrand [7], as discussed above.

Theorem 2.1. Let G be a product group of permutations on the set S, let A = G be
non-empty, and let ©1 €y G. Then

P(n € A) E[exp il—éf(A,n)} < 1.

The proof works by induction on the order of G. We first sketch the rough idea and
introduce some notation we shall use later. From now on we shall not use the notation m;
to refer to a restriction of =: in the next paragraph we introduce a new meaning for the
notation.

Suppose that S is a set of integers and that the orbit {a(1) : 0 € G} of the element 1
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in S is {L,...,m} for some m = 2. Let H denote the stabilizer of this element, that is, H
is the subgroup of G consisting of the permutations o such that o(1) = 1. We write ¢¢
for the permutation with o1(k) = o(t(k)). Let Hy = H, and for i = 2,...,m let H; denote
the coset Hry; of H, where t;; denotes the transposition of i and J. Thus G is partitioned
into the m cosets H;, where H; consists of the permutations ¢ with ¢(i) = 1, and each H,
has size |G|/m. Let A; = AN H;. For each distinct i and j, we can upper-bound f(4,0)
(with coordinate i counted twice) in terms of f(A;, o) (with coordinate j counted twice)
and f(Aty, 0). When m; €y H;, then m;t); €y H, and T;ty; 18 the ‘same distance’ from Aty;
as m; is from A. Such results allow us to use an induction hypothesis applied to ny e; H
to handle = €5 G.

For the detailed proof we need a number of lemmas. We first check that the set V{4, a)
of vectors indexed by S transforms in the natural way under composition of permutations
and taking inverses. Let 7 € Sym(S): given a vector x = (x; : 1 € §) we let x7 denote
the vector with (xt), = x,q), and, given a set ¥ of such vectors, we let V't denote the
corresponding set of vectors x1 for x € V.

Lemma 2.2, For non-empty A = Sym(S) and 0,1 € Sym(S),

V(dAt,at) = V(4,0)r,
VA~ o™) = V(4,0)0 L.

Proof. Let u € U(4,0), so that there exists p € 4 such that p(k) = o(k) whenever
u(k) = 0. We use the notation u(k) here rather than u, to avoid lengthy suffices below. Let
U = ur, that is, @#i(k) = u(z(k)) for each k. If ti(k) = 0, then u(z(k)) = 0, so

pelk) = p(z(k)) = a(c(k)) = o1(k),

and so @l € U(At,01). It follows that U(4,0)t = U(Ar,01), and by symmetry we obtain
U(At,0t) = U(A, o)t. Hence V(dr,01) = V(4,0)r.

We prove the latter inequality in a similar way. Let u € U(4,a), so that there exists
p € A such that p(k) = o(k) whenever u(k) = 0. Let @ = us~'. If #(k) = 0, then
u(e™'(k)) = 0 so po—!(k) = ool (k) =k, and so0 p~'(k) = o~ (k). Since p~! € A1, we
have i € U(4~!,671). 1t follows that UA~L 67" 2 U4, 0)e™!, and by symmetry we
obtain U(4~!,6™!) = U(A,5)o~!. Hence V(A= o71) = V(d,o)oL. L]

Recall that

fld,0) =dr(A,0)? = min{z v;" ve VA, a)}.
ies

For j € S, let

ies
Thus coordinate j is ‘counted twice’ here. Observe that f(4,0,)) = f(4,0) if (j) = o(j)

for each = € 4, and in particular if 7(j)=jforeachte AU {c}. The above lemma yields
the following,

fld, o, ) = min{uf + Z v v e V(A, a)}.
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Lemma 2.3. For non-empty A < Sym(S), 0,7 € Sym(S) and j€ S,
f(d,0) = f(Az,07),
f(4,0,j) = fldr,ot, 77 ()

f(d,a,j) = f(A7 a7 a()). 0
The next lemma is similar to Lemma 5.3 in [7], and is crucial to the induction.

Lemma 24. Let A < Sym(S), let o € Sym(S), let i,j € S be distinct, and let 0 < A< L.
Let Aj={re€eAd z=(i)= o(i)} and A; ={t € A 11(j) = a(j)}, and suppose that A; and A;
are nonempty. Then

f(A, 0,0y < ML — AP + Af (A, 0, j) + (1 — A)f(A;tij, 0).

Proof. We need one more piece of notation: given distinct i, j € S, let

g(d,o,i,]) = min{z v} 1ve V(A4, a)}.

I#i,J

Let s € V(4,0) satisfy g(4,6,i,j) = ZI%U S‘,", and let t € V(A4,0) satisfy ; = 0 and
f(As,0,)) = Z‘,%j t? -l—?.tf. Since V (A4, o) is convex, the vector v = (1 —A)s+Atisin V(4,0).
Thus
fd,0.) <D of + 207 +17.
I#L]
Now, since the function x — x? is convex,

v} < (11— A)st+ At?.

Also
207 = 2((1 — A)si)? < 2(1 — A,
and
b2 = (1 — Dsj + Ay)* <201 — )?s] + 220 < 21— AP+ 2288,
Hence

fld,o,0) < S (1= M)+ atf) +4(1 - Ay 42083
11,

= 4(1—- AP+ -—A)Zs,z -{—/’L(Z 17 +2z§)
ey, 1]
= 4(1 — A+ (1 — Ag(A, 0,1, J) + Af (Ais 0, ])-
Finally note that

g(As a, i: J) < f(Atijs O') < f(Ajtij’ O'). [
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It is convenient to state two further lemmas before we start the main proof of The.
orem 2.1. The first is a form of Holder’s inequality (see, for example, [1, p. 465] or [4,
Lemma 4.12]), which we state here in a form useful for us.

Lemma 2.5. For any (appropriately integrable) functions f and g and random variables X
and Y, and any 0 < A < 1,

E (e ell-Rs¥)) (E(ef(X)))"-(E(eg(X))) -1
The last preliminary result we need is from [2, 7] (or see [4, Lemma 4.11]).

Lemma 2.6. Forall0<r<1,

. . Li1_. 2
inf rtes—4" <2
o<i<l

Proof of Theorem 2.1. We use induction on the order of G to prove a slightly stronger
result. We show that, when = €y G, for each non-empty A = G and each s € §,

P(r € A)E [exp Tlé-f(A, T, s)] < 1. (2.4)

Note that this inequality is trivial if G is trivial (i.e, if G contains only the identity
permutation) since then A = G.

For a non-empty subset K of Sym(S), let supp(K) denote the set of points s € S such
that o(s) # s for some ¢ € K. Note that supp(G) is empty if and only if G is trivial.

To prove (2.4) for nontrivial G it suffices to consider only s € supp(G). For if s € supp(G)
then, for each s’ € S \ supp(G) and each ¢ € G,

fld,0,5") = f(4,0) < f(A,0,5).

Now let |G| > 2 and suppose that the result (2.4) holds for any product group H which
is a proper subgroup of G, together with any non-empty subset of H. We may assume
without loss of generality that S is a set of integers, that s = 1 and that s € supp(G). We
now recall the notation introduced in the sketch of the proof. Let H denote the stabilizer
of the element 1. We may assume without loss of generality that the orbit of the element 1
is {L,...,m} for some m = 2. Then H is a product group of permutations on S, where the
block {1,...,m} has been split into the two blocks {1} and {2,...,m}. Let H, = H, and
fori=2,...,mlet H; denote the coset Htj; of H. Thus G is partitioned into the m cosets
H;, where H; consists of the permutations ¢ with o(i) = 1, and each H; has size |G|/m.

Let A = G be non-empty, and let p denote P(z € A4) so that p=|Al/|G|. Fori=1,...,m
let A; = AN H; and let ¢; = |4;|/|H|. Thus

m

p= % > 4.
i=1

Observe that if ¢ € H; then the present notation A; agrees with that in Lemma 2.4. Choose
J such that g; is a maximum, and keep j fixed. The main part of the proof of (2.4) will
consist in establishing the following claim,
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Claim. Let i€ {1,...,m} and let ;; €y H;. Then

1
B[ exp ()| <47'C—a/a)) 29)

Proof of Claim. For notational convenience let ¢, denote the identity element e. If A4; 1s
nonempty, then by Lemma 2.3

1 . 1
E [exp Téf(Al; i, J):l =E [exp _i_G_f(Aitli: Tcitlia tll(j))i\ 3
and hence
1
E[BXP Ef(Aisni:j):\ < g (2.6)

by the induction hypothesis, since A;f;; € H, mtu €u H, and |d;ty|/|H| = qi. By
Lemma 2.3 again,

1 . 1
E {GXP Téf(Ajtij: Wi)} =E [GXP Téf(Ajtijtlia Tit1i) |
and hence
E [exp flg (At m)} < gt Q2.7

by the induction hypothesis, since A4 tijt; & H, mit,; €y H, and |Ajtijtul /| H) = q;
We shall use the results (2.6) and (2.7} to complete the proof of the Claim. Suppose
first that i # j. If A; is non-empty, then by Lemmas 2.4 and 2.5, foreach 0 < A< 1,

E {exp —11—6f(A, T, i)]

_ A , 1— 4
< edl!™V'g [CXP ¢/ (Aimn ) eXP g f(Ajffj,“f)]

A
< edli=H’ (E [CXP Tléf (4, n:,j)D (E {GXP i%f (4tijs “i)D

Lig 32— —{1—-24
ed! ™ g qj( :

Lop—ay2?  — —
TR D

By minimizing over A using Lemma 2.6, we obtain

1—A

A

1 . -
E [exp i—éf(A,n',-, L)] < 4q; Y2 —qi/ay).
If 4; is empty, then, since
f(A,o,0) <3 + f(Ati,0) £ 3 + f(Ajtij o)
it follows by (2.7) that

3

1 1 - —
. [exp i, i)] < ek ["XP e’ (Ajtif’m)] <efigy! <gqp'2—ai/a))
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Finally consider the case i = j. Then, by (2.6),
1 : - _
E[@Xp 7gf (A z)] <q¢ ' =9q;'Q—a/q).
This completes the proof of the Claim. O

We now resume the main proof. Recall that s = 1. When x €y G,

m

1 4 1 1 :
B|exp el m )] = | > E|oxp e fAm. i)
where n; €y H;. Hence, when 7 €u G, by the Claim,
1 -1 1<
E [ exp T f(4, m,m (s))] < = ; 72— a1/q))

= q;' (2—p/q))
= p'x(2 — x),

where x = p/q;. But x(2 — x) < 1, which shows that

p E[ exp flg f(A, =, n"l(s))J < 1. (2.8)

This last result holds for any non-empty set 4 = G. In fact we shall use it with 4 replaced
byAl={s"1 :¢0e A}. When 7 €y G, by Lemma 2.3 the random variables f(A4, , 5)
and f(A™!, 7z, n(s)) have the same distribution, and thus so also does f(A™,x, 7 1(s)).
Hence

PE|exp (A 9)] = (471116 [ o7 n )] <,
by (2.8). This completes the induction step, and thus the proof, ]

We now extend Theorem 2.1 above. We need first to extend the definitions of flA,x)
and dr(4,x) given at the start of Section 2. For a nonsingular matrix M with rows and
columns indexed by I, we let

dm(A,x) = min{|Mv|: v € V(4, x)},
and let
Fu(A,x) = dy(A,x)%.
It may be checked, much as with (2.2), that

dp(A4,X) = sup dya (A, x), (2.9)
of

where the sup is over all unit vectors o indexed by I.
Let X = (Xi,...,X,) bea family of random variables, where X ; takes values in the set
Q. Let Q = H;=1 Q. Assume that, for each non-empty 4’ < ',

P(X ¢ A)E [ exp 4—11 f(A4, X)J <1 (2.10)

Theorem 4.1.1 of Talagrand [7] (or see Theorem 4.9 of [4]) states that the inequality (2.10)
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holds if the X; are independent. Let G be a product group of permutations on a set §
as before, let Q = Q x G, and let © €y G. Assume that X and = are independent. Let
Y denote (X,7), so that Y takes values in Q. We may assume that {1,...,n} and S are
disjoint, and let I = {1,...,n} US. Let M = (my;) be the diagonal matrix with rows and
columns indexed by the set I, where my; = 2 for i € {1,...,n} and mz =1 for i € . Thus

R =450+ 0k
=1

ieS
For j € S, let
Fuld,y, j) = min{v}+ [Mv|*: v € V(4, )}

(Thus, if M j is the diagonal matrix obtained from M by resetting the jj-entry to /2, then
fu(A, ¥, j) = fumj(A,y), but we shall not use this notation.)

Theorem 2.7. Let A = Q be non-empty. Then

P(Y € A) El:exp %fM(A, Y)] < 1 (2.11)

Markov’s inequality immediately yields the following.

Corollary 2.8. For any t 20,
P(Y € A)P(dy(4,Y) = 1) S e 5" O

Proof of Theorem 2.7. Just as with Theorem 2.1, we use induction on the order of G to
prove a slightly stronger result. We show that, for each s € S,

P(Y € 4) E[exp Tl-é fM(A,Y,s)] <1 (2.12)

Note that Lemmas 2.3 and 2.4 each hold with f replaced by far: let us refer to these
results as Lemmas 2.3, and 2.4y, respectively.

Suppose first that G contains only the identity element e. For AcQ, let A/ ={x€Q :
(x,e) € A}. Then the left-hand side of (2.12) equals

PX e A)E [exp % 4, X)] :

which is at most 1, by assumption (2.10) above.

Now let |G| = 2 and suppose that the result (2.12) holds for any product group H that
is a proper subgroup of G, together with any non-empty subset of @ x H and s € S. We
shall establish the induction step much as for Theorem 2.1, by replacing o by (x,0), etc. In
order to be able to keep the proof as similar as possible to the earlier proof, let us change
the notation here, and assume that S = {1,..., 1S|} and X is the vector (X|g|+1,,..,XlS|+,,).
We may now, as before, assume without loss of generality that s = 1 and that the orbit of
the element 1 is {1,...,m} for some m > 2. Let H denote the stabilizer of the element 1,
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so that H is a product group of permutations on S. Let H, = H, and for ; = 2,...,m let
H; denote the coset Hty; of H. Let A < Q be such that

p=PY cAd)>0.
Fori=1,...,mlet 4; = {(x,0) € A : ¢ € H;}, and let
qi = P((X, ) € A|n(i}) = 1),

so that

n

p= % ZQi-
i=1

Now, if 7; €y Hj, g €y H and A;ty; denotes {(x, oty;) : (x, o) € A;}, then
gi = P((X,m) € A)) = P((X, mit;) € Asts) = P((X, tgy) € Asty)),

since m;ty; €y H. Choose j such that g j 18 a maximum, and keep j fixed. The main part
of the proof of (2.12) will consist in establishing the following claim.
Claim. Letie {1,...,m} and let n; €y H;. Then

E[@XP 1—16fM(A, (X, 7:), i)] <q;7' (2~ ai/q). (2.13)

Proof of Claim. If g; > 0, then, by Lemma 2.3,,,

1 : 1 .
B e (X, )] = B exp 1 i, (Ko, )|
and hence
B | exp i ful (X)) | < a7, .14

by the induction hypothesis since 7ty €y H. Similarly, by Lemma 2.3, again,

1 1
E [exp ‘1’6‘fM(Ajtija (X, ﬂi))] =E [CXP EfM(Ajtijtli; (X, nifli))} ;
and hence
1

by the induction hypothesis since Tty €y H. We shall use the above results (2.14)
and (2.15) to complete the proof of the Claim.
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Suppose first that i # j. If g; > 0, then by Lemmas 2.4, and 2.5, for each 0 < A< 1,
1 .
E [exp (A4, (X, ), a)]
LU”A)ZE 12- A X . l - A ..
S el BXp 1_6'fo( f:( 57!"!')1]) exp —u—1~6_fM(AJtl‘]a (Xaﬂ-f)s I,])

1 2 1 A 1
< e (E[exp -i—GfM(Ai,(x,m),j)D (E[exp%fwf(Arf,-,(x,n,»),i,j)D

L(—A)2 —4  ~—(i—4
< est™g; qJ'( )

Laa—1?  — —
= g /g

By minimizing over A using Lemma 2.6, we obtain

—A

B[ exp fe A (K,m), )| <ar'e—ala)
If ¢; = 0, then since fp(A4,y.1) < 3 + fa(Ajtij, y), it follows from (2. 15) that
E[exp L fut4, (%), i)] < ehgrt <2 —ai/a)).
Finally, if i = j, then by (2.14),
E[exp TIE Far(A4, (X, ), i)] <E {exp Ilg Far (A (X, 7), i‘)] < g7 =q7' 2 — ai/a))-

This completes the proof of the Claim. 1

We now resume the main proof. Recall that s = 1. When n €y G,

m

E[exp —EéfM(A, (X,n),n*l(s))] 1 ZE[exp 16fM(A (X, i), z)]

where n; €y H;. Hence, by the Claim,

m

E [exp I% FalA, (X, ), 71:"1(5))] < = Z q7'(2 — ai/q))

= q7 ( —p/4j)
= p~Hp/g)2—(p/a)
< pl,

since x(2 — x) < 1. We use this resuit with 4 replaced by A~ = {x,07") : (x,0) € A}
By Lemma 2.3, the random variables fa (4, (X, 7), s) and fu(4~1 (X, m), n~1(s)) have the
same distribution. Hence

pE [exp Ilg fM(A,Y,s)] =pE [exp -11—6 Farld™h (X, m), n—l(s))] <1

This completes the induction step, and thus the proof. i
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Proof of Theorem 1.1. We use Corollary 2.8 and argue much as in [4]. Note that it makes
no difference in Theorem 1.1 if we assume that the sets By are pairwise disjoint, so let ug
do so. Observe first that if two permutations ¢ and 7 disagree in at most k coordinates,
then there is a product of at most k — 1 transpositions taking ¢ to z. Let o = (x, a) €Q,
and suppose that h(w) = s. Let J be a set of at most rs coordinates such that if o' € O
satisfies ) = w; for each j € J then h(w’) = s. Let f be the indicator vector 17, and let o
be the unit vector |J|~1/2f. Then, for each ' € Q,

i
Wo') 2 h(w) — cdppr(w, ©) = Kw) — c|J|2dum (o, @),
where M 1s the matrix in Theorem 2.7, and so

h(w') 2 h(w) — /y(w)dam (0, @),

where y = rc?. (Thus h is like a ‘p-configuration function’ in the language of [4]. )
Letaz 0, let A, = {0’ € Q : h{w') < a}, and suppose that A, is non-empty. Then

h(w) € a+ /yh(w)dep(w, ')

for each w’ € A4,, and so by minimizing over such o’ we have

hw) < a+ /yh(@)da(Aa, w) < a + /yh(w)dp(Aq, @)
by (2.9). Thus, if £t > 0, w € Q and h(w) = a +t, then
h(a)) > t
A/yﬁ(coi NN

since the function g(x} = (x — a)/ /X is increasing for x 2 a. Thus, for each t > 0,

dM(Aa:

P(h(Y)=a+1t) < (dM(Aa:Y) > -—~—~—t—)

«/yia—|-ti

Hence, by Corollary 2.8, for each £ > 0,
PW(Y) < a)P(WY) = a+ 1)
< P(Y € 4,)P (dM(AaaY) > —t—>

«/yia+ri
t2
< S —
e"p( 16?(a+t)>

Now we may complete the proof by appropriate choices of a in this last inequality. If we
let a = m, then, smce Ph(Y)<sm)=14 5, we obtain (1.1); and if we let a = m —¢ then, since
P(h(Y) = m) = 1, we obtain (1.2). 0

3. An application to graph colouring

In a series of papers and a book (see [5]), Molloy and Reed prove many deep results
on graph colouring by probabilistic methods. One of the tools they use is Theorem 1.1
above, and indeed such a result was ‘commissioned’ by them for use in the book [5]. In



Concentration for Independent Permutations 175

particular, they use Theorem 1.1 to prove upper bounds on the chromatic number x(G)
of a graph G in terms of the cligue number w(G) and the maximum degree A(G).

By Brooks' theorem, (a) v(G) € A(G) + 1; and (b) for any graph G with A(G) 2= 3, if
o(G) < A(G) then ¥(G) < A(G). The following theorem from [5] says roughly that if w(G)
is much less than A(G) then so is (G).

Theorem 3.1. For any & > 0, there exist Ay and & > 0 such that, for any graph G with
AG) = Mo, if ©(G) < (1 — &)A(G) then x(G) < (1 — 3)A(G).

To prove this theorem, Molloy and Reed consider a colouring procedure along the
following lines. First the nodes of G are partitioned into a number of ‘dense’ sets
Dy, Da,... and a ‘sparse’ set S. For a suitable choice of § > 0, each dense set D; has a
colouring using colours 1,2,...,¢, where ¢ = (1 — 8)A and we write A for A(G). We make
a first attempt to colour G as follows.

(1) For each ‘sparse’ node v € 5, independently assign a colour X, €y {L...., c}.

(2) For each dense set D;, independently pick m; €y Sym({1,...,c}), and use ; to permute
the given colours on D;; that is, if node v € D; originally has colour j we now assign
it colour m;(j). (The idea is to make the colouring of D; ‘look random’ to the rest of
the graph.)

(3) For each ‘sparse’ node v € S, if any neighbour of v is assigned the same colour as v,
we uncolour v.

(4) For each dense set D; and cach colour y, if any node in D; coloured y is adjacent fo
another node coloured y, then each node in D; coloured 7 is uncoloured.

If a node is not uncoloured in step (3) or step (4) above we say that it retains its
colour. We want to show that, with positive probability, the partial colouring formed by
the retained colours has certain properties that allow us to extend it to a c-colouring of
all of G. The property we focus on here is as follows.

For each node v € S let Y, be the number of neighbours of v that retain their colour
less the number of distinct colours retained on the neighbours of v, Let y = oA + 1. If
Y, > y for each v € § then we may greedily extend the partial colouring to all of S. For,
when we come to colour a node in S, the number of forbidden colours must be at most
A—y=c¢—1. A similar approach works for the dense sets D;, but we do not consider
that here.

We then want to show that, with positive probability, we have Y, = y for each v € S.
If we can prove that, for each v € S, the probability that ¥, <y is very small, then we
can apply the Lovasz Local Lemma to complete the proof. In fact, it is sufficient to prove
that P(Y, < y) is o(A~5). Our aim from now on is to establish the following claim.

Claim. P(Y, < y) = ¢4

Proof of Claim. Let Z, be the number of colours y which are assigned to exactly two
neighbours of v and are retained by both. Observe that Y, = Z,. It may be shown that
for a suitable choice of & > 0 we have E(Z,) = 2y. At last we come to the concentration
part: we show that Z, is very unlikely to be far below its mean.
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Let Z, be the number of colours assigned to at least two neighbours of v, and et z
be the number of colours either assigned to at least three nelghbours of v, or assigned to
at least two but retained by at most one. Then Z, = Z, — Z,. We use Theorem 1.1 to
show that both Z, and Z, are concentrated.

First consider Z,. Changing some value x, or swapping two elements in some 7; affects
only two colours and so can change Z, by at most 2: hence we may take ¢ = 2. (In fact
the reader may easily check that Z, can change by only 1, and so we could take ¢ = 1)
If a node is assigned colour vy, then to certify this we need reveal only one coordinate. So
if Z, = s, then to certify this we need reveal only 2s coordinates: for each of s colours 7,
we reveal the coordinates corresponding to the colour y on two neighbours of v. Thus we
may take r = 2. Also Z, < A/2 and so its median m/, < A/2. Hence, by (1.3),

: G/0°\ _ _an
P(1Z, — ml] > y/6) < dexp (—W _ o

We may handle Z, similarly. Changing a value x, or swapping two elements in some T;
affects only two colours, and so we may take ¢ = 2. If Z, > s, then to certify this we need
reveal only 3s coordinates: for each of s colours y, we exhibit coordinates corresponding
to either three neighbours of v coloured y, or two adjacent neighbours of v coloured v, or
two non-adjacent neighbours of v coloured y together with one further node coloured 7,
which causes at least one of them to lose its colour. Thus we may take r = 3. Hence, if
m, denotes a median of Z,, then much as before we obtain

P(lZ; —m:,| = y/G) = ¢~ UA),
Now let u = m, ~ m,. Then, by the last two inequalities,
P(Z, —ul = y/3) < (|Z —m)| = ¥/6) —I—P(lZ —m| > »/6)
= ¢~fUA)
It follows that if A is sufficiently large then u = (4/3)y, for otherwise
2y < E(Z) < (5/3)y + AP(Z, — > y/3) <2y.

Then
P(Y, <y) < P(Z, <)
< P(IZU "“' ,Ltl = y/3)
— )
and we have established the claim. [l
4. Bad sets

The first two conditions on the function % in Theorem 1.1 imply that, for each (x,o) and
(x,0') in Q,

h(x,6)— h(x,0’) < 2c d(x,x ) + ¢ d(c, o),
and indeed the proof of Theorem 1.1 uses exactly this property. (Here d denotes Hamming
distance, and as usual the permutation ¢ on S is specified by the vector (a(i) :i € S).) Of
course, by symmetry we could replace the left-hand side above by its absolute value.
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We now consider weakened versions of these conditions. Let B = Q be a ‘bad’ or
‘failure’ set on which conditions may fail. Let ¢ and r be positive constants, and suppose
that the nomnnegative real-valued function # on Q satisfies the following two conditions
for each (x,0) € Q\ B.

¢ For each (x,0') in Q,
h(x,0) — h(x’, o’) € 2¢ d(x,xt) +cd(o, o).
o If h(x,0) = s, then in order to show that h(x,a) = s we need specify only at most rs
coordinates of (x, o).

The first condition above ensures that, as we move away from any vector (x, o) not in the
‘bad set’ B, the value of the function h cannot decrease too suddenly.

Suppose that the random variable Y is as in Theorem 1.1, and assume that the bad set
B satisfies P(Y € B) < 12 Let m be a median of the random variable Z = h(Y).

Theorem 4.1. For each t = 0,

£ _
>n <2 —— P (B), 4.1
P(Z=m+1) exp( T6rcim T I)) + P(B) (4.1)
and
1 -1 £
P(Zz<m—1t) < (§—P(B)) exp (w I6rc2m) (4.2)
!
- . 4.3
< 4cxp( 161'(‘2111) (43)

if P(B) < j-

The latter inequalities here are perhaps at first sight surprising: even when the bad set
B has probability as large as -}3, the probability of a large deviation below the median 1s
small. In order to illustrate this behaviour with bad sets, let us return to the basic case

without random permutations.

Example. Let Q= {0,1}" and let X = (X1,...,X,) be uniformly distributed over Q. Let
¥ be a large number, say 100n. For x = (X[,....Xx) € £, let hix) =y if x; =x2= 1, and
h(x) = 3, x; otherwise. Observe that the median m of h(X) is about n/2 and the mean is
n/2+ 1y —1—n/2), ’

Let B={x € Q:x =xp =1} so P(XeB)= dl,‘ Let x € @\ B. Then for all x € Q we
have h(x) — h(x ) < d(x,X ). Also, if h(x) = 5, then in order to show that h(x) =s we need
to specify at most s coordinates. Thus Theorem 4.1 (without the random permutations)
applies to this situation. Hence, by this result (or directly from bounds on the tails of the
binomial distribution), large deviations below the median are unlikely: we find from (4.3)
above that, for t > 0,

£2
PH(X)sm—1)< 4exp(—ﬁ).
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But for deviations above the median the picture is quite different: if 0 <1<y —mthey
P(X)zm-+1) = i

Proof of Theorem 4.1. Just as in the proof of Theorem 1.1, we find that if ¢ >0, w € Q\B,
and h(w) = a +t, then

h(w) —a t
dM(Aa,(D) B \/'))h((,!)) ,>—"' \/y(a—|-ﬂ'

Thus, for each t > 0,

P(h(Y)=a+t and (Q\ B)) < P(dM(Aa, Y) > m—t—m>

NVICE)

Hence, by Corollary 2.8, for each t > 0,
P(WY) < a)P(h(Y) = a + 1)
< P(Y € 4,) (P (dM(Aa, Y) =

t
NCED) ) +P(B))

< exp( —fi——) + P(h(Y) < a)P(B)

16y(a + 1)
Hence
£2
S Za — < — e ],
P(h(Y) < a)(P(A(Y) = a + 1) P(B)) exp( 6700 T t))
Now we may complete the proof by appropriate choices of a in this last inequality. If we
let a = m we obtain (4.1) and if we let a = m — t we obtain (4.2). L

Extensions of Theorem 2.1 above to more general ‘locally acting’ groups of permutations
are considered in [3].
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