Multimodal topic modeling for exploratory search in collective blog

Anastasia Yanina • yanina-n@yandex-team.ru Konstantin Vorontsov • voron@forecsys.ru

11th International Conference on Intelligent Data Processing: Theory and Applications

The paradigm of Exploratory Search

- what if the user doesn't know which keywords to use?
- what if the user isn't looking for a single answer?

Gary Marchionini. Exploratory Search: from finding to understanding. Communications of the ACM. 2006, 49(4), p. 41–46.

Iterative "query-browse-refine" search vs Exploratory Search

R.W.White, R.A.Roth. Exploratory Search: beyond the Query-Response paradigm. San Rafael, CA: Morgan and Claypool, 2009.

Exploratory search

Query

Exploratory query is a description of user's search intention (1-2 pages of text)

Search results

Result of exploratory search is a set of relevant articles.

A user should be able to create a complete picture of the subject area after looking through the search results.

Example of query for exploratory search

Multimodal topic model

D — set of documents (collective blog articles)

T — set of topics,

M — set of modalities.

 W^1, \ldots, W^m — dictionaries for each modality $m \in M$.

Modalities: words, authors, comment authors, tags, categories.

Φ matrix of term distributions of topics for modality m:

$$\Phi_m = (\phi_{wt}^m)_{W^m \times T} \qquad \phi_{wt}^m = p(w|t) \quad \forall m \in M$$

 Θ matrix of topic distributions of documents:

$$\Theta = (\theta_{td})_{T \times D}, \qquad \theta_{td} = p(t|d)$$

Multimodal ARTM (Additively Regularized Topic Model)

Maximum log-likelihood with multiple modalities and regularization:

$$\sum_{m \in M} \lambda_m \sum_{d \in D} \sum_{w \in W^m} n_{dw} \ln \sum_t \phi_{wt} \theta_{td} + R(\Phi, \Theta) \ \to \ \max_{\Phi, \Theta}$$

where $R(\Phi, \Theta) = \sum_{i=1}^{n} \tau_i R_i(\Phi, \Theta)$ is a combination of regularizers.

EM-algorithm is a simple iteration method for the system

E-step:
$$\begin{cases} p_{tdw} = \underset{t \in T}{\mathsf{norm}} \left(\phi_{wt} \theta_{td} \right) \\ \phi_{wt} = \underset{w \in W^m}{\mathsf{norm}} \left(\sum_{d \in D} \lambda_{m(w)} n_{dw} p_{tdw} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}} \right) \\ \theta_{td} = \underset{t \in T}{\mathsf{norm}} \left(\sum_{w \in d} \lambda_{m(w)} n_{dw} p_{tdw} + \theta_{td} \frac{\partial R}{\partial \theta_{td}} \right) \end{cases}$$

BigARTM project

BigARTM features:

- Parallel + Online + Multimodal + Regularized Topic Modeling
- Out-of-core one-pass processing of large text collection
- Built-in library of regularizers and quality measures

BigARTM community:

- Open-source https://github.com/bigartm (discussion group, issue tracker, pull requests)
- Documentation http://bigartm.org

BigARTM license and programming environment:

- Freely available for commercial usage (BSD 3-Clause license)
- Cross-platform Windows, Linux, Mac OS X (32 bit, 64 bit)
- Programming APIs: command-line, C++, and Python

Data from collective blog habrahabr.ru

Data

- 132 157 articles (in Russian)
- Metadata:
 - author
 - tags and categories
 - · comments and their authors
 - number of article views
 - number of article likes

Modalities of the collective blog

- Terms: 52354 unigram words
- Article authors: 1000 users
- Comment authors: 10000 users
- Tags: 2546
- Categories: 123

Regularizers and quality criteria

Regularizers

- Decorrelation for terms in topics
- Smoothing for terms in topics
- Sparsity of topics in documents
- Background topics to highlight common vocabulary words

Quality criteria

- Perplexity
- Sparsity of terms in topics
- Sparsity of topics in documents

Greedy coordinate-wise multicriteria optimization of regularization coefficients

We add regularizers one by one to improve sparsity without loss of the perplexity.

Topical exploratory search

- Learn a topic model from a text collection (offline)
- Calculate a topic representation of the query (quick online)
- Rank documents by topical similarity to the query
- Use top k documents as search result

$$q=(w_1,\ldots,w_{n_q})$$
 — query text of n_q terms $heta_{tq}=p(t|q)$ — topic distribution of query q $heta_{td}=p(t|d)$ — topic distribution of document $d\in D$

Cosine measure of similarity between document d and query q:

$$\mathrm{sim}(q,d) = \frac{\sum_{t} \theta_{tq} \theta_{td}}{\left(\sum_{t} \theta_{tq}^{2}\right)^{1/2} \left(\sum_{t} \theta_{td}^{2}\right)^{1/2}}.$$

Inverted index can by used for search documents d by query topics t

Evaluation of the exploratory search quality

Assessors

Queries

Two tasks for assessors:

- Find as much as possible relevant articles using any tools (search engines, searching by tags, etc.)
- 2 Evaluate the relevance of topical search for the same query.

Examples of ES-query titles in our experiment

Algorithms for coloring graphs Netflix Techniques for fast typing Elon Mask space projects Hadoop MapReduce Self-driving Google car Public-key cryptography Platforms for online education Data Science Meetups in Moscow Educational projects mail.ru Interplanetary station New horizons Word2vec

IBM Watson 3D-printing CERN-кластер AB-testing Cloud computing services Contextual advertising Rover Curiosity Videocards NVIDIA Pattern recognition Google scholar MIT MediaLab Research Microsoft Azure

Results of search quality evaluation

Number of queries: 25 (10 are shown in the table, averages by 25)

Number of assessors per query: 3

Average time for processing query: 30 minutes

Automatic topical search vs. assessors' search

Assessors				Topical search			
search	docs	Preci-	Recall	docs	Preci-	Recall	
time	found	sion		found	sion		
48	9	0.89	0.80	12	0.83	1.0	
40	25	0.92	0.95	25	0.92	1.0	
15	10	0.80	0.88	11	0.72	1.0	
40	18	0.94	0.85	20	0.85	0.85	
40	55	0.92	1.0	57	0.84	0.94	
15	12	0.91	1.0	14	0.57	1.0	
25	12	0.94	0.83	10	0.90	0.75	
28	12	0.83	0.9	10	0.80	0.72	
50	7	0.88	0.88	10	0.70	0.88	
45	15	0.94	0.93	23	0.60	0.88	
average:	18	0.87	0.89	20	0.77	0.91	

Results of search quality evaluation

Assessors vs. topical search: Precision, Recall, F1, Time

Precision and Recall

Time and f-measure

Results of search quality evaluation (in average)

Number of queries: 25 (10 are shown in the table, averages by 25)

Number of assessors per query: 3

Average time for processing query: 30 minutes

Automatic topical search vs. assessors' search (all metrics are averaged by queries)

Metric	assessors	topical search	
Precision@5	0.82	0.74	
Precision@10	0.87	0.77	
Precision@15	0.86	0.68	
Precision@20	0.85	0.68	
Recall@5	0.78	0.82	
Recall@10	0.84	0.88	
Recall@15	0.88	0.90	
Recall@20	0.88	0.91	

Finding the optimal number of topics in model

The advantage of our evaluation technique:

Asking assessors once, we can evaluate and compare many models

Assessors' vs. topical search: Precision@k and Recall@k, for the model with 5 modalities and different number of topics |T|

	asessors	100	200	300	400	500
Precision@5	0.82	0.61	0.74	0.71	0.69	0.59
Precision@10	0.87	0.65	0.77	0.72	0.67	0.61
Precision@15	0.86	0.67	0.68	0.67	0.65	0.62
Precision@20	0.85	0.64	0.68	0.67	0.64	0.60
Recall@5	0.78	0.62	0.82	0.80	0.72	0.63
Recall@10	0.84	0.63	0.88	0.81	0.75	0.64
Recall@15	0.88	0.67	0.90	0.82	0.77	0.67
Recall@20	0.88	0.69	0.91	0.85	0.77	0.68

Finding the optimal set of modalities

The advantage of our evaluation technique:

Asking assessors once, we can evaluate and compare many models

Assessors' vs. topical search: Precision@k and Recall@k, with fixed |T| = 200 and different sets of modalities (Words, Tags, Hubs (categories), Authors, Comment authors)

	assessors	W	С	TH	WT	WH	WTH	WTHAC
Pr@5	0.82	0.63	0.54	0.59	0.74	0.73	0.73	0.74
Pr@10	0.87	0.67	0.56	0.58	0.77	0.74	0.75	0.77
Pr@15	0.86	0.65	0.53	0.55	0.67	0.67	0.68	0.68
Pr@20	0.85	0.64	0.53	0.54	0.66	0.67	0.68	0.68
Recall@5	0.78	0.77	0.63	0.69	0.82	0.81	0.82	0.82
Recall@10	0.84	0.79	0.64	0.71	0.88	0.82	0.87	0.88
Recall@15	0.88	0.82	0.67	0.73	0.90	0.84	0.89	0.90
Recall@20	0.88	0.85	0.68	0.74	0.91	0.85	0.89	0.91

Conclusions & Contacts

- We used ARTM for the topical Exploratory Search
- We proposed the evaluation technique for Exploratory Search
- The automatic topical Exploratory Search is much faster than assessors' one, having comparable quality

Yanina Anastasia

Analyst, Yandex LLC Moscow Institute of Physics and Technology

yanina-n@yandex-team.ru