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The project

Proteins

Amino acid sequences that fold into spacial shapes under certain
environmental conditions (atomic arrangement in 3D)

The goal

Investigation of the protein design problem
(predict amino acid sequences given a protein spacial shape)

Applications and importance

Design proteins that posses given properties:

Disease therapeutics

Novel enzymes

Self-assembling proteins/peptides
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Challenges of optimization approach to protein design

Issues

Objective is undefined

NP-hard optimization problem

Huge dimensionality

Requires biological experiments to assess the performance

Problems

1 Define an objective

2 Control the amino acid occurrence in predicted sequences

3 Solve the arisen optimization problem
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Problems of computational structural biology for proteins of length 𝑚

𝒜 = {Ala,Arg,Asn,Asp,Cys,Glu,Gln,Gly,His, . . . ,Trp,Tyr,Val}

Cys = [N,C𝛼,C,H,O⏟  ⏞  
backbone part
Sb=R3×3

,H𝛼,C𝛽,H𝛽1 ,H𝛽2 ,S𝛾 ,H𝛾⏟  ⏞  
side-chain part (rotamer)

ℛ

]

Rotamer

𝑆𝑚
t ⊂ 𝒜𝑚 × S𝑚b ×ℛ𝑚 — full proteins

𝑆𝑚
r ⊂ 𝒜𝑚 × S𝑚b — reduced proteins

𝜙r — rotamer prediction

𝜙f — protein folding

𝜙d — protein design
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Protein backbone similarity function 𝜌(𝑏′, 𝑏)

𝑏 ∈ S𝑚b = R𝑚×3×3 — a native protein backbone
𝑏′ ∈ S𝑚b — an arbitrary protein backbone (model structure)

Root-mean-square deviation of atomic positions

RMSD(𝑏′, 𝑏)⏟  ⏞  
∈[0,∞)

=
(︁ 1

3𝑚
min
𝑡∈R3

S∈SO(3)

𝑚∑︁
𝑖=1

3∑︁
𝑘=1

‖𝑏𝑖𝑘 − S𝑏′𝑖𝑘 + 𝑡‖22
)︁1/2

Template modeling score (𝜌TM = 1− TM-score)

TM-score(𝑏′, 𝑏)⏟  ⏞  
∈(0,1]

=
1

𝑚
max
𝑡∈R3

S∈SO(3)

𝑚∑︁
𝑖=1

(︂
1 +

‖𝑏𝑖2 − S𝑏′𝑖2 + 𝑡‖22
𝑑20

)︂−1

Global distance test scores (𝜌GDT-TS = 1− GDT-TS)

GDT-TS(𝑏′, 𝑏)⏟  ⏞  
∈[0,1]

=
1

4𝑚
max
𝑡∈R3

S∈SO(3)

𝑚∑︁
𝑖=1

4∑︁
𝑗=1

1
[︀
‖𝑏𝑖2 − S𝑏′𝑖2 + 𝑡‖2 < 𝑐𝑗

]︀
,

𝑐1,2,3,4 = 1, 2, 4, 8A, 1[·] — the truth {0, 1} predicate.
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The protein design problem statement

Given a protein backbone 𝑏0 ∈ S𝑚b = R𝑚×3×3 — coordinated of
atom triplets [N,C𝛼,C] for 𝑚 undefined amino acids in 3D space.

Find sequences 𝑎 ∈ 𝒜𝑚 that fold to shapes close to backbone 𝑏0:

𝜙d(𝑏
0) = Argmin

𝑎∈𝒜𝑚
𝜌(𝑏0, (𝜋tb ∘ 𝜙f)(𝑎)⏟  ⏞  

native backbone of 𝑎

).

We propose a two-stage solution

1 Build an approximate scoring function

𝑆(𝑎, 𝑏0) ≈ 𝑆*(𝑎, 𝑏0) := 𝜌(𝑏0, (𝜋tb ∘ 𝜙f)(𝑎))

2 Solve optimization problem

𝑆(𝑎, 𝑏0) → min
𝑎∈𝒜𝑚
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Building a protein backbone scoring function

Given a similarity function 𝜌 :
⋃︀∞

𝑚=1 S𝑚b × S𝑚b → R
and a set of protein backbone domains 𝒟1, . . . ,𝒟𝑛:

𝒟𝑖 =
{︀
𝑃 𝑖
𝑗 = (𝑎𝑖, 𝑏𝑖𝑗) | 𝑗 = 0, . . . , 𝑡𝑖

}︀
⊂ 𝒜𝑚𝑖 × S𝑚𝑖

b ,

where 𝑃 𝑖
0 = (𝑎𝑖, 𝑏𝑖0) ∈ 𝑆𝑚𝑖

r is the native protein with sequence 𝑎𝑖.

Build a scoring function 𝑆 :
⋃︀∞

𝑚=1𝒜𝑚 × S𝑚b → R that
approximates actual scoring function 𝑆* on domains 𝒟1, . . . ,𝒟𝑛:

𝑆(𝑃 𝑖
𝑗 ) ≈ 𝑆*(𝑎𝑖, 𝑏𝑖𝑗) = 𝜌(𝑏𝑖𝑗 , (𝜋tb ∘ 𝜙f)(𝑎

𝑖)⏟  ⏞  
𝑏𝑖0

).

Quality criteria:

Loss(𝑆;𝑃0,𝒟) =
⃒⃒⃒

max
𝑃 ′∈𝒟∖{𝑃0}

𝑆*(𝑃 ′)− 𝑆*( argmax
𝑃 ′∈𝒟∖{𝑃0}

𝑆(𝑃 ′))
⃒⃒⃒
,

Z-score(𝑆;𝑃0,𝒟) =

𝑆*

(︃
argmax

𝑃 ′∈𝒟∖{𝑃0}
𝑆(𝑃 ′)

)︃
−E𝑃∼𝒟∖{𝑃0}𝑆

*(𝑃 )

√
D𝑃∼𝒟∖{𝑃0}𝑆

*(𝑃 )
,

Pearson’s, Spearman’s rank, and Kendall’s tau corr. coeff.
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Model and features

Bulk water

Feature extraction:
f :

⋃︀∞
𝑚=1𝒜𝑚 × S𝑚b → R𝑘

Linear model:
𝑆(𝑃 ) = ⟨w, f(𝑃 )⟩

f̃(𝑃 𝑖
𝑗 ) :=

[︂
f(𝑃 𝑖

𝑗 )
𝛽𝑒𝑖

]︂
∈ R𝑘+𝑛

w̃ :=

[︂
w
𝑏

]︂
∈ R𝑘+𝑛

Empirical risk minimization:

min
w,b

[︁
𝑅(w,b) +

𝑛∑︀
𝑖=1

𝑡𝑖∑︀
𝑗=0

𝐿
(︀
𝑆(𝑃 𝑖

𝑗 ) + 𝑏𝑖, 𝑆*(𝑃 𝑖
𝑗 , 𝑃

𝑖
0)
)︀ ]︁

𝛼

(︂
‖w‖22 +

1

𝛽2
‖b‖22

)︂
+

𝑛∑︁
𝑖=1

𝑡𝑖∑︁
𝑗=0

(︀
𝑆(𝑃 𝑖

𝑗 ) + 𝑏𝑖 − 𝑆*(𝑃 𝑖
𝑗 , 𝑃

𝑖
0)
)︀2 → min

w,b

𝛼‖w̃‖22+
𝑛∑︁

𝑖=1

𝑡𝑖∑︁
𝑗=0

(︁⟨
w̃, f̃(𝑃 𝑖

𝑗 )
⟩
− 𝑆*(𝑃 𝑖

𝑗 , 𝑃
𝑖
0)
)︁2

→ min
w̃

— ridge regression
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Protein design as optimization of pairwise decomposable function

Proposed scoring function is pairwise decomposable:

𝑆(𝑎, 𝑏) =

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝐸𝑏
𝑘𝑙(𝑎𝑘, 𝑎𝑙) → min

𝑎∈𝒜𝑚
.

Suppose 𝒜 = {𝑎1, . . . , 𝑎𝑡}. Reduction to BQP:

𝑚∑︁
𝑘,𝑙=1

𝐸𝑏
𝑘𝑙(𝑎𝑘, 𝑎𝑙) =

𝑚∑︁
𝑘,𝑙=1

𝑡∑︁
𝑖,𝑗=1

𝐸𝑏
𝑘𝑙(𝑎

𝑖, 𝑎𝑗)1[𝑎𝑘 = 𝑎𝑖]⏟  ⏞  
𝑥𝑘
𝑖

1[𝑎𝑙 = 𝑎𝑗 ]⏟  ⏞  
𝑥𝑙
𝑗

.

Assume Q =
[︁
[𝐸𝑏

𝑘𝑙(𝑎
𝑖, 𝑎𝑗)]𝑡𝑖,𝑗=1

]︁𝑚
𝑘,𝑙=1

. Equivalent BQP problem:

minimize
𝑥

𝑥TQ𝑥

subject to 𝑥 = [𝑥1T
, . . . ,𝑥𝑚T]T

𝑥𝑘 ∈ {0, 1}𝑡, 𝑘 = 1, . . . ,𝑚,

‖𝑥𝑘‖0 = 1, 𝑘 = 1, . . . ,𝑚.
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Probabilistic problem statement for protein design

Posterior probability maximization

𝑝(𝑎|𝑏0) → max
𝑎∈𝒜𝑚

,

where likelihood is defined as follows:

𝑝(𝑏0|𝑎) ∝ exp

(︂
−
∑︀𝑚

𝑘=1

∑︀𝑚
𝑙=1𝐸

𝑏
𝑘𝑙(𝑎𝑘, 𝑎𝑙)

𝑇

)︂
.

Note that
𝑝(𝑏0|𝑎) → max

𝑎∈𝒜𝑚
⇐⇒

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

𝐸𝑏
𝑘𝑙(𝑎𝑘, 𝑎𝑙) → min

𝑎∈𝒜𝑚

Let us introduce the prior distribution

𝑝(𝑎1, . . . , 𝑎𝑚) = 𝐶
∏︁
𝑎∈𝒜

𝒩
(︀
𝑚𝑎| 𝑚𝑝𝑎,𝑚𝜎2

𝑎

)︀
,

where

𝒩
(︀
𝑥| 𝜇, 𝜎2

)︀
= 1√

2𝜋𝜎2
𝑒−

(𝑥−𝜇)2

2𝜎2 , 𝑚𝑎 =
∑︀𝑚

𝑖=1 1[𝑎𝑖 = 𝑎], 𝑎 ∈ 𝒜,

𝑝𝑎 and 𝜎𝑎 for each 𝑎 ∈ 𝒜 — the distribution parameters,
𝐶 is the normalizing constant. 10 / 18



Energy corrections for prior distribution

Lemma (Energy corrections, Karasikov 2016)

Let prior distribution 𝑝(𝑎1, . . . , 𝑎𝑚) be defined by formula
𝑝(𝑎1, . . . , 𝑎𝑚) = 𝐶

∏︀
𝑎∈𝒜

𝒩
(︀
𝑚𝑎| 𝑚𝑝𝑎,𝑚𝜎2

𝑎

)︀
.

Then the problem of maximization the posterior probability
𝑝(𝑎|𝑏0) → max

𝑎∈𝒜𝑚
is equivalent to minimization of the total energy

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

[︀
𝐸𝑘𝑙(𝑎𝑘, 𝑎𝑙) + 𝐸′

𝑘𝑙(𝑎𝑘, 𝑎𝑙)
]︀
→ min

𝑎1,...,𝑎𝑚
,

where energy correction terms are introduced as follows:

𝐸′
𝑘𝑙(𝑎𝑘, 𝑎𝑙) :=

⎧⎨⎩
𝑇
2𝑚 · 1−2𝑝𝑎𝑘

𝜎2
𝑎𝑘

, 𝑎𝑘 = 𝑎𝑙;

− 𝑇
2𝑚 ·

(︁
𝑝𝑎𝑘
𝜎2
𝑎𝑘

+
𝑝𝑎𝑙
𝜎2
𝑎𝑙

)︁
, 𝑎𝑘 ̸= 𝑎𝑙.

11 / 18



Computational experiment

Goals:

1 Investigation of the scoring quality depending on the size of
the training set and width of the kernel for feature smoothing

2 To compare the quality of proposed scoring function with
state-of-the-art methods

3 Investigation of the contribution of energy corrections
introduced to regulate the occurrence ratio of amino acids of
different types in predicted sequences

Data:

Protein models from the CASP[5-11] competition

Per 300 NMA protein models for each native from CASP
within RMSD range [0.5, 6]A using 100 first normal modes

Native protein structure from the test set of SCWRL4
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Dependency on smoothing
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Figure: Performance on the CASP10 (stage1 and stage2 together)
dataset depending on width of the smoothing
kernel 𝜎𝑎 = 𝜎𝑟 = 𝜎ℎ = 𝜎𝑠 = 𝜎 when training on the CASP[5-9] datasets
without smoothing (𝜎 = 0). 13 / 18



Learning curves
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Figure: Learning curves for Performance on validation depending on the
number of backbone domains used when training. Training: random
subsets of CASP[5-10]. Validation: CASP11 (stage1 and stage2
together). 14 / 18



Performance comparison

QA Method
CASP11 Stage1 CASP11 Stage2

Loss PCC SCC Loss PCC SCC

This study 0.083 0.645 0.522 0.057 0.441 0.426
ProQ2 0.090 0.643 0.506 0.058 0.372 0.366

VoroMQA 0.108 0.561 0.426 0.069 0.401 0.386

Wang-SVM 0.109 0.655 0.535 0.085 0.362 0.351

Dope 0.111 0.542 0.416 0.077 0.304 0.324

RWplus 0.135 0.536 0.433 0.084 0.295 0.314

Table: Performance on the CASP11 dataset. Quality criteria: Mean
metric loss (Loss), Pearson (PCC), and Spearman (SCC) correlation
coefficients between predicted scores and actual scores 𝑆*. Trained on
CASP[5-10].
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Contribution of energy correction terms
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Figure: Average occurrence frequency of different amino acids in
predicted sequences depending on temperature factor 𝛽 = 1/𝑇 .
Averaged on dataset SCWRL4.
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Conclusions

Proposed protein scoring function:

uses interpretable physical model;

uses only conformation of the backbone;

is robust to errors in side-chain positions;

is smooth function of atomic positions;

achieves the state-of-the-art performance;

is pairwise decomposable.

Proposed energy correction terms:

control the frequency of occurrence of different amino acids in
predicted sequences

Further research directions:

Outliers detection in the training set

Incorporation of the physics-based features

Experiments of protein design performance based on the
proposed scoring function
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Personal contribution

Proposed a novel method for protein scoring function

Developed a program package for the protein quality
assessment and executables for Windows, Linux, and MacOS

Proposed energy correction terms for regulating the frequency
of occurrence of different amino acids in sequences predicted

Conducted experimental comparison of different techniques
for convex relaxations and general methods of discrete
optimization when solving the arising BQP problem that
proved the applicability of the semidefinite relaxation with
random sampling as the best method among the tested ones
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Backup: convex relaxations for BQP

minimize
𝑥∈{0,1}𝑛

𝑥TQ𝑥

subject to A𝑥 = 1𝑚,

1 Continuous

min
𝑥∈R𝑛

{︁
𝑥T(Q− 𝜆minI𝑛)𝑥+ 𝜆min1

T
𝑛𝑥

⃒⃒⃒
A𝑥 = 1𝑚, 0𝑛 6 𝑥 6 1𝑛

}︁
2 Lagrange (dual problem)

min
𝜆∈R𝑛,𝑢∈R𝑚

{︂
𝛾 − 𝑟(𝑢)

⃒⃒⃒
𝛾 6 0,

[︂
P(𝜆) 1

2𝑞(𝜆,𝑢)
1
2𝑞

T(𝜆,𝑢) −𝛾

]︂
∈ 𝒮𝑛+1

+

}︂
3 Positive semidefinite (SDP)

min
𝑥,X

⎧⎨⎩Tr (QX)
⃒⃒⃒

A𝑥 = 1𝑚,
AX = 1𝑚𝑥,T

𝑋𝑖𝑗 ∈ [0, 1],
𝑋𝑖𝑖 = 𝑥𝑖,

𝑖, 𝑗 = 1, . . . , 𝑛,

[︂
X 𝑥
𝑥T 1

]︂
∈ 𝒮𝑛+1

+

⎫⎬⎭
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Backup: relaxation → approximate solution

Random sampling for SDP relaxation

𝑥′ ∼ 𝒩 (𝑥,X− 𝑥𝑥T⏟  ⏞  
∈𝒮𝑛

+

)

Rounding

Projection �̂� ∈ Proj𝑉 𝑥, where 𝑉 = {𝑥 ∈ {0, 1}𝑛 |A𝑥 = 1𝑚} is
computed as follows:

�̂�𝑘𝑖 :=

⎧⎨⎩1, 𝑖 =
̂︀

argmax
𝑗=1,...,𝑡

𝑥𝑘𝑗 ,

0, otherwise,

where 𝑘 = 1, . . . ,𝑚,
̂︀

argmax
𝑗

𝑥𝑗 = min(Argmax
𝑗

𝑥𝑗).
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Backup: optimization results for rotamer prediction
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Figure: Box plots for normalized approximate optimal values obtained by
different optimization methods. Averaged over first 40 structures from
the SCWRL4 dataset.
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Backup: optimization results for protein design
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Figure: Box plots for normalized approximate optimal values obtained by
different optimization methods. Averaged over structures from the
SCWRL4 dataset and sequence lengths 𝑚 = 5, 10, 15, 20, 25, 30.
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Backup: optimization results for protein design
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Figure: Upper bounds on the optimal value and Average ratio of
correctly predicted amino acids. Averaged over 352 protein structures in
the SCWRL4 dataset. DFIRE-C𝛼 (Zhang et al., 2004) energy function.
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Backup: distributions for different protein backbone scores
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