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The project

Proteins

Amino acid sequences that fold into spacial shapes under certain
environmental conditions (atomic arrangement in 3D)

The goal

Investigation of the protein design problem
(predict amino acid sequences given a protein spacial shape)

Applications and importance

Design proteins that posses given properties:
m Disease therapeutics
m Novel enzymes

m Self-assembling proteins/peptides



Challenges of optimization approach to protein design

m Objective is undefined
m NP-hard optimization problem
m Huge dimensionality

m Requires biological experiments to assess the performance

Define an objective

A Control the amino acid occurrence in predicted sequences

Solve the arisen optimization problem
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Problems of computational structural biology for proteins of length m

A = {Ala, Arg, Asn, Asp, Cys, Glu, GIn, Gly, His, . .., Trp, Tyr, Val}

CyS = LNa Caa Ca H? Oa HOH CB’ HBl’ H52’ S’Y’ H'Y]

backbone part side-chain part (rotamer)
Sb:R3X3

St C A™ x SP x Rm — full proteins

oy — rotamer prediction
f — protein folding
(pq — protein design

¢3 Primary
_ structure
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Protein backbone similarity function p(b',b)

b € SI* = R™*3%3 — 3 native protein backbone
b’ € SJ' — an arbitrary protein backbone (model structure)
m Root-mean-square deviation of atomic positions

RMSD(b',b) = (— bix — Sbiy, +t
SD(b', b) (m%I;ZZIIk wl!)
€[0,00) S€50(3) =1 =1

m Template modeling score (ptm = 1 — TM-score)
1 b; bl 12\~
TM-score(b’, b) = — max Z 1+ [bia — 8222 + ||2>
N—— ——

m teR / dg
€(0,1] SESO(?)) i=

m Global distance test scores (PGDT 1s =1 —GDT-TS)

GDT-TS(¥',b — ma ]l bjo — Sbly + 1|2 <
0= o ma ZZ b S8z -t < .
€[0,1] SeS0(3) =1 j=

c1234 =1,2,4,8A, 1[-] — the truth {0, 1} predicate.



The protein design problem statement

Given a protein backbone b° € SI* = R™*3*3 — coordinated of
atom triplets [N, C,, C] for m undefined amino acids in 3D space.

Find sequences a € A™ that fold to shapes close to backbone b°:
a(b”) = Argmin p(b°,  (my, 0 ¢r)(a@) ).
N————

acA™
native backbone of a

We propose a two-stage solution
Build an approximate scoring function
S(a,b%) ~ S*(a,b%) := p(b", (mp 0 1) (@)
H Solve optimization problem

S(a,b’) — min
acA™



Building a protein backbone scoring function

Given a similarity function p: [Jo_; SP* x Sf* — R
and a set of protein backbone domains D1, ..., D,:

Di = {P] = (a',b7) | j =0,....t;} CA™ xS,
where Pg = (ai, bio) € S is the native protein with sequence a'.

Build a scoring function S : |J;7_; A™ x S — R that
approximates actual scoring function S* on domains Dy, ..., Dy:

S(PY) ~ S*(a',b) = p(bY, (my, 0 1) (@')).
——

Quality criteria: Bi0
u LOSS S,P ,D = max S* P/ _S* arg max S P/ ,
(S; Po, D) \P,GD\{PO} (F) (P,ED\{PO} (P")

S*( arg max S(P’)) —Ep~p\{Py}S*(P)
'eD\{Py}

m Z-score(S; Py, D) = re )
(8; P, D) VDpap\{Py}S*(P)

m Pearson’s, Spearman’s rank, and Kendall's tau corr. coeff.




Model and features

Feature extraction:
£ Up_ Am xS — RE
Linear model:

S(P) = (w,f(P))

f'(P]?) = {f[(i’]:)} c RE+n

W= [‘2’} € RF+"

Emplrlcal risk minimization:

Bulk vt min [R(w.b) + 3 3 z L(S(P})+bi, 5°(P}, F)) |
o (Il + 3 b1 ) + 303 (S(7) + b= 8°(F}. 79)° — wip
i=1 j=0 ’
n b . SN2
oz||v~vH%+Z Z (<V~V, f(P]Z)> - S*(P;, PS)) — min — ridge regression
i=1 j=0 w
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Protein design as optimization of pairwise decomposable function

Proposed scoring function is pairwise decomposable:

m m
= Eb — min .
DD Bia,a) = min

k=1 =1
Suppose A = {a',...,a'}. Reduction to BQP:
m m t
> Bhav.a) = Y- Y Bhla', o) Lo = ] 1o = o’
k=1 k,l=11,j=1 ™ l
CC,L- Ij

. . m
Assume Q = [[Egl(az,a])]g,jzl}klﬂ. Equivalent BQP problem:

minimize xz'Qx
xr
subject to x = [a:lT, ™
e {0,1}, k=1,...,m,

lz¥lo=1, k=1,...,m.
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Probabilistic problem statement for protein design

Posterior probability maximization
0
a|b”) — max
p( ’ ) acAm’

where likelihood is defined as follows:

p(b0|a) x exp (_ qu?:l Zﬁl Ellc)l(akval)> .

T
Note that m m
0 b :
p(b°la) = max = ;;Ekxak,az) — min

Let us introduce the prior distribution

plai,...,am) =C HN(ma| mpa,mag) ,

acA
where )
_(z—p)
N (2| po?) = s=e” 2t ma =3 1ai =a], a € A

Pq and o, for each a € A — the distribution parameters,
C' is the normalizing constant. 10/18



Energy corrections for prior distribution

Lemma (Energy corrections, Karasikov 2016)

Let prior distribution p(ay,...,a.) be defined by formula
plai,...,an) =C [] N (mq| mpa, mo?).
A

Then the problem of maximization the posterior probability
p(alb’) — max is equivalent to minimization of the total energy
acA™

m m
ZZ [Ekl(ak,al) —i—E,’cl(ak,al)] — min |,

ai,...,am
k=1 1l=1

where energy correction terms are introduced as follows:

T 1—-2pg .
om 0.2 kv ap = ag;
Pl a)=1" B
“9m ( _'_ ) y Ok # a.
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Computational experiment

Goals:

Investigation of the scoring quality depending on the size of
the training set and width of the kernel for feature smoothing

To compare the quality of proposed scoring function with
state-of-the-art methods

Investigation of the contribution of energy corrections
introduced to regulate the occurrence ratio of amino acids of
different types in predicted sequences

Data:
m Protein models from the CASP[5-11] competition

m Per 300 NMA protein models for each native from CASP
within RMSD range [0.5, 6]A using 100 first normal modes

m Native protein structure from the test set of SCWRL4
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http://predictioncenter.org/download_area

Dependency on smoothing
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Figure: Performance on the CASP10 (stagel and stage? together)

dataset depending on width of the smoothing

kernel 0% = 0" = 0" = 0® = & when training on the CASP[5-9] datasets

without smoothing (o = 0). 13/18




Learning curves
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Figure: Learning curves for Performance on validation depending on the
number of backbone domains used when training. Training: random
subsets of CASP[5-10]. Validation: CASP11 (stagel and stage?
together).



Performance comparison

CASP11 Stagel CASP11 Stage2
Loss PCC SCC Loss PCC SCC

This study || 0.083 | 0.645 | 0.522 || 0.057 | 0.441 | 0.426
ProQ2 0.090 | 0.643 | 0.506 || 0.058 | 0.372 | 0.366
VoroMQA 0.108 | 0.561 | 0.426 || 0.069 | 0.401 | 0.386
Wang-SVM || 0.109 | 0.655 | 0.535 || 0.085 | 0.362 | 0.351
Dope 0.111 | 0.542 | 0.416 || 0.077 | 0.304 | 0.324
RWplus 0.135 | 0.536 | 0.433 || 0.084 | 0.295 | 0.314

QA Method

Table: Performance on the CASP11 dataset. Quality criteria: Mean
metric loss (Loss), Pearson (PCC), and Spearman (SCC) correlation

coefficients between predicted scores and actual scores S*. Trained on
CASP[5-10].
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Contribution of energy correction terms
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Figure: Average occurrence frequency of different amino acids in
predicted sequences depending on temperature factor § = 1/T.
Averaged on dataset SCWRL4. 6 s



Conclusions

Proposed protein scoring function:

m uses interpretable physical model;

m uses only conformation of the backbone;
is robust to errors in side-chain positions;
is smooth function of atomic positions;

achieves the state-of-the-art performance;
m is pairwise decomposable.
Proposed energy correction terms:

m control the frequency of occurrence of different amino acids in
predicted sequences

Further research directions:
m Outliers detection in the training set
® Incorporation of the physics-based features

m Experiments of protein design performance based on the
proposed scoring function



Personal contribution

m Proposed a novel method for protein scoring function

m Developed a program package for the protein quality
assessment and executables for Windows, Linux, and MacOS

m Proposed energy correction terms for regulating the frequency
of occurrence of different amino acids in sequences predicted

m Conducted experimental comparison of different techniques
for convex relaxations and general methods of discrete
optimization when solving the arising BQP problem that
proved the applicability of the semidefinite relaxation with
random sampling as the best method among the tested ones
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Backup: convex relaxations for BQP

minimize ' Qx

xze{0,1}n

subjectto Az =1,,,
Continuous

glg’IelﬁQI}t {mT(Q - AminIn)m + )\min]-:zm ‘ Ax = ]-ma 0, <z

/N

—

3
——

Lagrange (dual problem)

: ()‘) %q()‘a u‘) n+1
— <
}\Ernr}lnem{"y 7(“)"}/\0, |: ~y eS

Positive semidefinite (SDP)

Ax=1,,

PR T Jax 1m0
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Backup: relaxation — approximate solution

Random sampling for SDP relaxation

' ~N(z,X —zz")
——

esn

Rounding

Projection & € Projy @, where V = {x € {0,1}" | Az = 1,,} is
computed as follows:

. 1, izargmaxx;?,
x,i = jzl,...,t

0, otherwise,

where k =1,...,m, argmaxz; = min(Arg maxz;).
J J
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Backup: optimization results for rotamer prediction
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Figure: Box plots for normalized approximate optimal values obtained by
different optimization methods. Averaged over first 40 structures from
the SCWRL4 dataset.
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Backup: optimization results for protein design
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Figure: Box plots for normalized approximate optimal values obtained by
different optimization methods. Averaged over structures from the
SCWRL4 dataset and sequence lengths m = 5,10, 15, 20, 25, 30.
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Backup: optimization results for protein design

0 : : : —F- Greedy

| | 2.5 —F— Anneal
—F— Anneal and Greedy
—F— ContRelax
2.0F —F— ContRelax and Greedy
—F spp

I SDP and Greedy

=500

—1000

—
o

—1500

—

—I— Greedy
—2000f —F— Anneal
—F— Annecal and Greedy - 7
—F— ContRelax Z
—92500 = S]()ur))tl'{vlax and Greedy 0.0
I SDP and Greedy

Approximate optimum value
Average prediction quality

\

10 2}) 30 10 20 ?:(]
Sequence length, m Sequence length, m
Figure: Upper bounds on the optimal value and Average ratio of
correctly predicted amino acids. Averaged over 352 protein structures in
the SCWRL4 dataset. DFIRE-C,, (Zhang et al., 2004) energy function.
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Backup: distributions for different protein backbone scores
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