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Topic modeling is an actively developing field in the
statistical analysis of texts [1]. A probabilistic topic
model identifies the topic of a text collection, describ�
ing each topic by a discrete distribution over a set of
words and each document by a discrete distribution
over a set of topics. Topic models are used for informa�
tion search, classification, categorization, annotation,
and summarizing of texts.

Suppose that we are given three finite sets: a text
collection D, a vocabulary W of words, and a set T of
topics. It is assumed that the order of words in the doc�
uments is of no matter and the collection is a random
sample from a discrete distribution p(d, w, t) on D ×
W × T. The variables d and w are observable, while t is
latent, i.e., the occurrence of each pair (d, w) is associ�
ated with some unknown topic t. The text collection is
represented by the frequency matrix F = ( )W × D,

where  = ndw/nd is the frequency estimate of the
conditional probability p(w|d), ndw is the number of
occurrences of the word w in the document d, and nd is
the length of the document d.

The probabilistic latent semantic analysis (PLSA)
model [2] describes the conditional probability of
occurrences of words in documents,

(1)

in terms of the unknown conditional distributions
p(w|t) ≡ ϕwt for each topic t ∈ T and p(t|d) ≡ θtd for each
document d ∈ D. The problem is reduced to the search
for a stochastic matrix decomposition F = ΦΘ. To find

p̂wd

p̂wd

p w d( ) ϕwtθtd

t T∈

∑=

an approximate solution, one maximizes the loga�
rithm of likelihood:

(2)

To maximize (2), one uses the EM�algorithm [2, 3],
in which two steps are iteratively repeated.

At an E�step, the Bayes formula is used to estimate
the conditional distributions of latent topics p(t|d, w)
for all words in the documents (d, w):

(3)

At an M�step, these conditional probabilities are
used to calculate the frequency estimates of the
desired conditional probabilities:

(4)

where the proportionality sign ∝ means that the
expression on the right has to be normalized to obtain
a distribution on the left.

The EM�algorithm has been well studied, and its
convergence to a local maximum of the likelihood has
been proved. Various methods for iteration rearrange�
ment aimed at convergence rate acceleration were
described in [4].

The latent Dirichlet allocation (LDA) model [5]
introduces an additional probability assumption that
the distributions ϕt and θd as column vectors of the
matrices Φ and Θ are generated by Dirichlet distribu�
tions with hyperparameters β = (βw)w ∈ W and α =
(αt)t ∈ T, respectively, which leads to the smoothing of
the frequency estimates at an M�step:

(5)
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The other differences between EM�like algorithms
for the PLSA and LDA models are subsidiary [3].
Moreover, their known modifications can be applied
to both models [4].

The LDA model has become de facto a basis for
hundreds of modifications adapted to a wide variety of
problems. At the same time, LDA generates two open
problems, which are rarely mentioned in the litera�
ture.

First, a priori Dirichlet distributions and their gen�
eralizations—the Dirichlet and Pitman–Yor pro�
cesses—have weak linguistic justification and do not
model any phenomena in natural languages. Their
application is caused only by mathematical conve�
nience, i.e., by the possibility of analytical integration
over the parameter space of the model in the case of
Bayesian inference.

Second, applications need composite models satis�
fying a large number of functional requirements [1].
Specifically, scientific search of large collections of
publications requires a model that is simultaneously
hierarchical, dynamical, n�gram, sparse, robust, mul�
tilingual, etc. Bayesian inference becomes too cum�
bersome when it combines more than two or three
requirements in a single model. Such models have not
yet been considered in the literature.

Thus, there is necessity of developing new princi�
ples of the design of topic models that are free from
redundant probabilistic assumptions and simplify the
construction of composite models. The proposed the�
ory of additive regularization of topic models (ARTM)
solves these problems.

The stochastic matrix decomposition ΦΘ is not
unique and is determined up to nonsingular transfor�
mation: ΦΘ = (ΦS)(S–1Θ). Thus, the construction of
a topic model is an ill�posed problem and regulariza�
tion has to be used for its solution. Instead of Bayesian
regularization, we propose using the more general
concept of Tikhonov regularization [6].

Assume that, along with likelihood (2), we need to
maximize n criteria Ri(Φ, Θ), i = 1, 2, …, n, which are
called regularizers. To solve the multicriteria optimi�
zation problem, we maximize a linear combination of
the criteria L and Ri with nonnegative regularization
coefficients τi:

(6)

As before, this problem can be solved using the
EM�algorithm, but with the modified M�step for�
mula:

R Φ Θ,( ) τiRi Φ Θ,( ),

i 1=

n

∑=

L Φ Θ,( ) R Φ Θ,( ) .
Φ Θ,

max→+

(7)

Adding another regularizer leads to the addition a
corresponding term to the M�step formula. Thus, one
can construct composite topic models combining
many additional requirements, including nonprobabi�
listic ones.

Below, we give examples of regularizers, some of
which are known in the literature (although it is not
always obvious that it is a regularizer) and the others
are new. The list of regularizers is far from being com�
plete and is rather illustrative.

1. A smoothing regularizer formalizes the require�
ment that the distributions ϕt and θd be close to given

discrete distributions  and  in terms of the Kull�
back–Leibler divergence:

where β0 and α0 are regularization coefficients. Differ�
entiating R immediately yields formulas (5) for an

M�step in LDA if we introduce βw = β0  and αt =

α0 . Here, we use neither a priori Dirichlet distribu�
tions nor Bayesian inference.

In ARTM theory, the Dirichlet distribution loses its
central role. This is only one of possible regularizers,
which is neither the best nor as universal as is thought.
As a basic model, it is more reasonable to use PLSA,
which does not have its own regularizers, and to add
problem�oriented regularizers.

2. Sparsing regularizer. It is natural to assume that
each document and each word is related to a small
number of topics. Then, among the probabilities ϕwt
and θtd, many must be zero. This contradicts the LDA
model, since the Dirichlet distribution does not admit
zero values in the generated vectors.

The sparser the distribution, the lower its entropy.
The maximal entropy is possessed by the uniform dis�
tribution. For this reason, we use a regularizer maxi�
mizing the divergence between the uniform distribu�
tion and the desired ones:

As a result, we obtain an M�step formula that dif�
fers from a smoothing regularizer in the sign of the
parameter and leads to sparsity:
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3. Regularizer for semi�supervised learning. To
improve the interpretability of a topic model, experts
can define training data. Suppose that it is known that
some of the documents d ∈ D0 concern the topics Td ⊂ T
and some of the topics t ∈ T0 are related to the words

Wt ⊂ W. Let  be a uniform distribution on Wt and

 be a uniform distribution on Td. Consider the reg�
ularizer

According to (7), the M�step formulas become

This is also a smoothing regularizer, but, in contrast to
LDA, it is applied only to those θtd and ϕwt for which
there are training data.

4. Covariance regularizer for topics. It is believed
that a high dissimilarity between the topics improves
the interpretability of a model [7]. A regularizer mini�
mizing the covariances between the column vectors ϕt,

leads to the M�step formula

The meaning of this formula is that the conditional
probabilities ϕwt = p(w|t) are gradually decreased for
those words w that have higher values of the probability
ϕws in other topics. In the course of iterations of the
EM�algorithm, for each word, the probabilities of
more significant topics become increasingly higher,
while the probabilities of less significant topics
decrease and can vanish. Thus, this regularizer is also
sparsing. Moreover, it has an additional useful prop�
erty of grouping stop words in separate topics [7].

5. Covariance regularizer for documents. Sometimes
there is additional information on the relations
between documents of similar topics. For example,
these can be documents belonging to the same cate�
gory or placed placed into the same folder by users of a
digital library or referring to each other. Suppose that
G = 〈D, E〉 is a given directed graph and the graph edges
(d, c) ∈ E mean that the topics of the document c are
close to the topics of the document d. This assumption
is formalized by the regularizer

ϕwt n̂wt – β( )+,∝

θtd n̂dt – α( )+.∝
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0
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where ndc is a weight of the edge (d, c), for example, the
number of references to c in d. In [8] a similar model
(LDA–JS) was proposed, in which the maximization
of the covariance is replaced by the minimization of the
Jensen–Shannon divergence between θd and θc.
According to (7), the M�step formula for θtd becomes

Thus, in the course of iterations, the conditional dis�
tributions θtd = p(t|d) approach the distributions θtc of
documents connected to d.

6. Maximization of coherence. A topic is called
coherent if the words occurring most often in it fre�
quently occur nearby in the documents. The average
coherence of the topics is considered a good measure
of the interpretability of a topic model. Let Cuv be an
estimate of the joint occurrence frequency of words
(u, v) ∈ Q ⊂ W2. The following M�step formula for the
Gibbs sampling algorithm with justification via the
generalized Pólya urn model was proposed in [9]:

It is easy to show that this formula also follows from
the regularizer

which minimizes the sum of the divergences between
each distribution ϕ

vt and its empirical estimate over all
words occurring with v.

7. Maximization of likelihood in classification prob�
lems. Suppose that there is additional information on
the classification of documents, and it is assumed that
the documents of the same class usually have similar
topics. As classes, one can use categories, authors,
publication years, quoting or quoted authors or docu�
ments, and users (readers) of documents. Specific
models have been developed for all these cases [1].
Assume that each document d is associated with a col�
lection of elements Cd from a finite set of class labels C.
The problem is to identify the relations between the
classes and topics, to improve the quality of the topic
model with the help of additional information on clas�
sifications, and to construct a classification algorithm
for new documents. One of the best classification topic
models is the Dependency LDA [10], which deter�
mines the distribution p(c|d) over classes for each doc�
ument in terms of the distribution over classes for each
topic ψct = p(c|t) and the distribution over topics for
each document θtd = p(t|d) by analogy with the basic
topic model (1):

(8)
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where the new unknown is the matrix Ψ = (ψct)C × T.
In [10] a rather cumbersome derivation of the Gibbs
sampling algorithm is given within the framework of
the Bayesian approach. However, the same result can
be achieved with the help of a regularizer minimizing
the divergence between the classification model p(c|d)
and the empirical class frequency in documents mdc:

(9)

where the regularization coefficient τ brings together
the word frequencies ndw and the class frequencies mdc.

When we use a linear combination of regularizers
Ri, the problem arises of choosing a coefficient vector

τ = . A similar problem is effectively solved in
ElasticNet while combining L1� and L2�regulariza�
tions in regression and classification problems [11]. In
topic modeling problems, the variety of regularizers is
wider and they affect each other in a nontrivial man�
ner. Preliminary experiments have shown that some
regularizers can worsen convergence if they are
included too early or too abruptly. Therefore, the reg�
ularization coefficients should be increased gradually,
so that they follow a certain trajectory. The construc�
tion of such trajectories in topic modeling problems is
as yet an open problem.
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