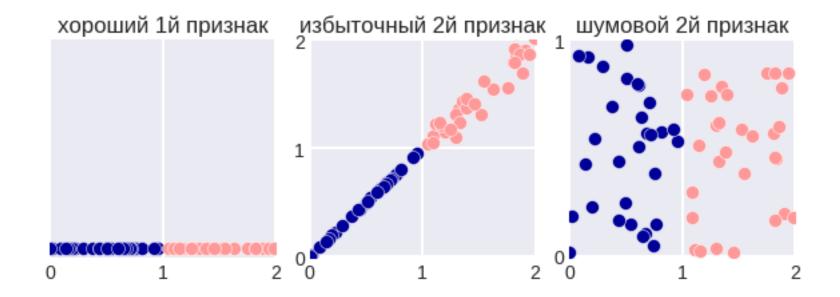


Отбор признаков (Feature Selection)

нахождение оптимального подмножества признаков, в соответствии с некоторым критерием

- процесс удаления избыточных и нерелевантных признаков



Отбор признаков (Feature Selection)

Причины

- интерпретация
- скорость работы алгоритмов
- борьба с переобучением (корреляции для линейных методов)
- повышения качества (если много шума)

Классификация методов

Фильтры (filter methods) – не ориентированы на конкретные модели алгоритмов машинного обучения

Обёртки (wrapper methods) – ориентированны на конкретные модели алгоритмов машинного обучения

Встроенные (embedded methods) – являются частью методов МО

Нет волшебного алгоритма!

Рассмотрим дискретные признаки (принимают конечное число значений)

Энтропия:

$$H(X) = -\sum_{x_i \in X} p(x_i) \log p(x_i)$$

Условная энтропия (conditional entropy)

Энтропии, вычисленные

для фиксированных значений признаков:

$$H(Y | X) = \sum_{x_i \in X} p(x_i) H(Y | X = \{x_i\}) =$$

$$= \sum_{x_i \in X} p(x_i) \sum_{y_i \in Y} p(y_j | x_i) \log(p(y_j | x_i))$$

Взаимная информация (Information Gain, Mutual Information)

Насколько более чётко определена Y, если знаем X

$$I(Y,X) = H(Y) - H(Y | X) =$$

$$= \sum_{y_{i} \in Y} \sum_{x_{i} \in X} p(x_{i}, y_{j}) \log \frac{p(x_{i}, y_{j})}{p(x_{i})(y_{j})}$$

$$MI = \sum_{x_i \in X} \sum_{y_j \in Y} p(x_i, y_j) \log \frac{p(x_i, y_j)}{p(x_i) p(y_j)}$$

Для независимых признаков = 0

Предпочитает выбирать признаки с большим числом значений

Ожидаемая вероятность в предположении независимости:

$$P(A \cap B) = P(A) \cdot (B)$$

	Y=0	Y=1	
X=0	6	4	Σ =10
X=1	14	16	Σ=30
	Σ=20	Σ=20	Σ=40

expected =
$$\frac{10}{40} \cdot \frac{20}{40} \cdot 40 = 5$$

$$\chi^2 = \sum \frac{\text{(observed - expected)}^2}{\text{expected}}$$

Разные статистики признаков:

- 1. Низкая оценка дисперсии почти константный признак
 - 2. t-оценка (для задачи с 2 классами)

$$\frac{|\mu_{1} - \mu_{2}|}{\sqrt{\frac{\sigma_{1}^{2} + \sigma_{2}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

3. Хи-квадрат (см. выше)

$$\chi^{2} = \sum_{i} \sum_{j} \frac{(n_{ij} - \mu_{ij})^{2}}{\mu_{ij}}, \ \mu_{ij} = \frac{\sum_{t} n_{it} \sum_{t} n_{tj}}{n}$$

 Корреляция между признаками корреляция с целевым ⇒ хороший корреляция с другим ⇒ один можно удалить

5. Использование других мер качества AUC-ROC-признака

- + сложность линейно зависит от числа признаков - не учитываем алгоритм
- оцениваем отдельные признаки (дальше исправим)

Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P. Trevino, Jiliang Tang, Huan Liu Feature Selection: A Data Perspective

Обёртки

Запускаем алгоритм на наборе признаков

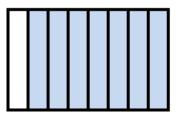
1	1	1	1	0	1	1
3	1	1	1	0	2	1
2	1	2	2	3	1	1
1	1	2	2	2	0	2
0	2	1	3	1	1	1
1	2	1	3	1	1	1
1	2	2	1	1	0	1

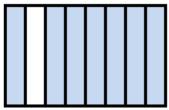
2

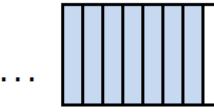
$$Q(\{f_1,...,f_k\}) = Q(A(X[:,[f_1,...,f_k]],y))$$

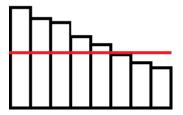
Обёртки на практике

Исключение (перестановка) по одному

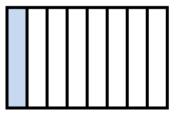


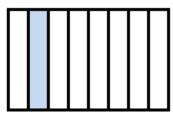






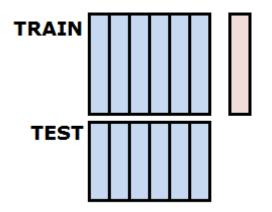
Качество по отдельным признакам



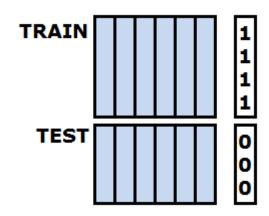


Стабильность признака

Исходная задача



Новая задача



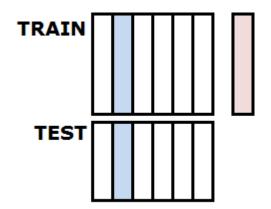
AUC ROC

2 ноября 2017 года

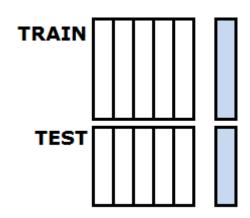
- Получаем оценку схожести обучения и контроля
- Важности признаков оценки их нестабильности
- Отбор признаков поиск стабильного признакового пространства

Зависимость (выводимость) признака

Исходная задача



Новая задача



Функционал?

- Получаем оценку зависимости признака от остальных
 - Можем последовательно удалять лишние признаки
 - Можно добавлять признаки к базовым

Отбор признаков как задача глобальной оптимизации

1	1	1	1	0	1	1
3	1	1	1	0	2	1
2	1	2	2	3	1	1
1	1	2	2	2	0	2
0	2	1	3	1	1	1
1	2	1	3	1	1	1
1	2	2	1	1	0	1

0 1 1 1 0 1 0

Максимизация функции

$$f: \{0,1\}^n \to \mathbf{R}$$

Решение задач глобальной оптимизации

Заведомо нет лучшего алгоритма

Пример функции с точечным носителем

- 1. Перебор
- 2. Направленный поиск
- 3. Стохастическая оптимизация

Полный перебор

Может не завершиться

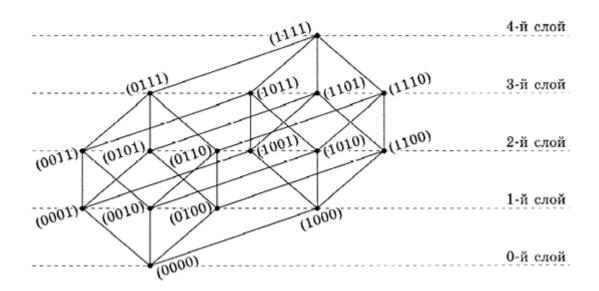
Грамотно организовать:

- сначала потенциально лучшие точки
- устанавливать свойства функции (монотонность, несущественность, эквивалентность переменных и т.п.)

Пример

- Перебор всех троек признаков
- Удалить те, которые не попали в хорошие подпространства

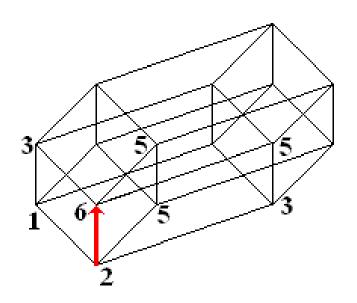
Направленный поиск



Точки для перебора выбираем из окрестности уже исследованных точек

- градиентный алгоритм
 - симуляция отжига
- метод луча (beam search)
 - локальный поиск

Направленный поиск
 Градиентный алгоритм

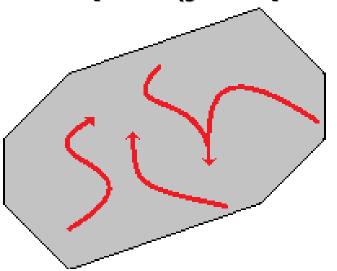


- 1. Начинаем со случайной точки
- 2. Ищем в окрестности текущей точки наибольшее значение 3. Переходим в соответствующую точку

Останавливаемся в локальном максимуме

Направленный поиск

Градиентный алгоритм (усовершенствования)



1. Перезапуски

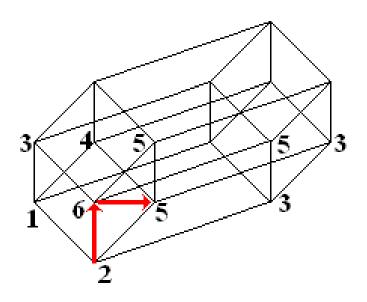
- 2. Параллельные запуски с переключением на перспективные ветки
 - 3. Продолжать движение в локальных максимумах симуляция

отжига

$$\exp([f(\tilde{z}^t) - f(\tilde{z})]/T)$$

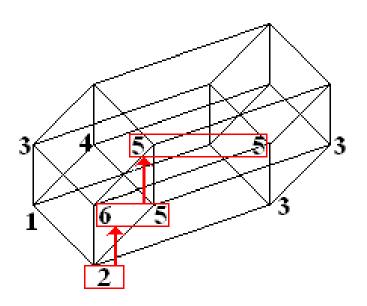
- 4. Идти в сторону k лучших (запоминать, что посетили)
 - 5. Также собирать информацию о функции

Направленный поиск Метод луча



Храним к лучших точек

Направленный поиск
 Локальный поиск

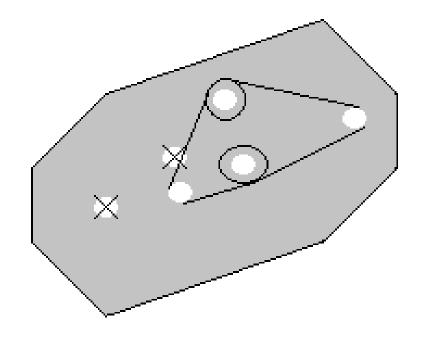


1. Стартуем с {(0,0,...,0)}

2. Среди соседей текущего множества выбираем k лучших соседей верхнего уровня

Стохастическая оптимизация Генетический алгоритм

- 1. Инициализация.
- 2. Селекция.
- 3. Скрещивание (размножение).
- 4. Мутации.
- **5.** Переход к п. 2.



1010101110010 0110100101011

1010101101011

Стохастическая оптимизация Генетический алгоритм (усовершенствования)

Селекция

- смерть от старения
- отбор по вероятности (оценка ~ вероятность смерти)
- смерть в боях (турниры)
- приход чужаков
- параллельно живущие популяции

Скрещивание

- разные схемы кроссовера
- разный выбор для скрещивания (все по парам, с вероятностями)
- алгоритм с постоянным числом индивидов (дети вместо родителей)
- конвейерная версия (0.1 выживает, 0.9 случайная пара переносит потомков)

Стохастическая оптимизация Генетический алгоритм (усовершенствования)

Мутация

- лучшие не мутируют (элитаризм)
- вероятность мутации выше, если нет улучшений
- генетика + градиент

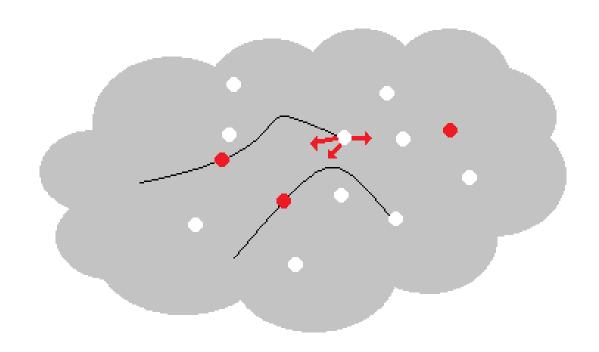
Кодирование особей

Число	Стандартный код	Код Грея
0	000	000
1	001	001
2	010	011
3	011	010
4	100	110
5	101	111
6	110	101
7	111	100

Стохастическая оптимизация Роевой алгоритм

$$f: \mathbf{R}^n \to \mathbf{R}$$

- К своему максимуму
- К максимуму роя
- К максимуму подруги



$$x_{t+1}^{i} = x_{t}^{i} + \alpha(m^{i} - x_{t}^{i}) + \beta(m - x_{t}^{i}) + \gamma(m^{j} - x_{t}^{i})$$

Стохастическая оптимизация

Полный перебор	Высокая точность при экспоненциальном времени работы
Направленный перебор	Приемлемая точность, простая реализация, быстрая работа.
пересор	Не полный перебор пространства.
	Хорошо работает при удачном выборе
Стохастический	всех параметров,
перебор	простой в реализации и модификации, избегает локальных максимумов.

Sean Luke Essentials of Metaheuristics. — Lulu, 2009. — 235 p.

Стохастическая оптимизация «Exploration vs. Exploitation»

задача исследования

Просмотреть как можно больше (новых) точек из всего пространства поиска

задача использования

Не пропустить хорошее решение и по максимуму использовать уже полученную информацию

Изменение параметров:

- радиус окрестности в градиентном алгоритме
 - вероятность мутации

• • • •

Встроенные методы

Линейная регрессия

$$Xw = y$$

Решение линейной регрессии

$$||Xw - y||^2 \rightarrow \min$$

Регуляризация по Тихонову

$$||Xw - y||^2 + \lambda ||w||^2 \rightarrow \min$$

LASSO

$$||Xw - y||^2 + \lambda_2 ||w||^2 + \lambda_1 ||w|| \rightarrow \min$$

from sklearn.linear_model import Ridge
clf = Ridge(alpha=1.0)
clf.fit(X, y)

Нормализация признаков!

Встроенные методы

Оценка важности в случайном лесе

- 1) Насколько уменьшает ошибку леса
- 2) Ухудшение на ООВ при перемешивании значений

Ещё способы уменьшить число признаков...

Уменьшение размерности