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Key principle

Suppose we want to find some function y(x).

Concept of learning

construct some model y = f(x, 6) using basic building blocks

select some differentiable scalar criterion to optimize L(f)

select optimization procedure (i.e. gradient descent)
solve §* = mein L(f)
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Artificial neurons

y(x) = o ({(w,x) — b)
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General idea

Everything discrete can be smoothed!

Sigmoid function:
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Fully-connected layer

Standard building block for neural networks:
y(x) = o(Wx — b)

MODEL REALITY

@ universal approximation properties!
if there is infinite number of neurons...

@ stack more layers!
gradient vanishing / exploding problem!
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Layer normalization
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® input x may have some complex structure: how to convert it
to vector in R9?

m categorical features: one-hot encoding

m images: convolutional layers 4+ pooling (CNN)
m sequence: recurrent layers (RNN, LSTM, GRU)
m raw audio: ?!?

m output y may have some complex structure: how to build the
model?

m no or little data available, how to choose criterion?

m uninterpretable («black box» model)

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 9/31



Deep Learning
000000000

Deep Learning

Supervised learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 10 / 31



Deep Learning

O@00000000

Supervised learning

Output Also some
J parametrized

transformation

High-level
extracted
features!

AN

Fully-connected

/ layers

Sergey Ivanov (617) MSU

Deep Learning Concepts

September 30, 2019

11/ 31



Deep Learning

O@00000000

Supervised learning

Output Also some
J parametrized
transformation Let (X,‘,y,') be our data.
Xj € RP

High-level
extracted
features!

AN

Fully-connected

— layers

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 11 /31



Deep Learning

O@00000000

Supervised learning

Output Also some
J parametrized
transformation Let (X,‘,y,') be our data.
Xj € RP

High-level stack some FC layers and get

features! high-level representation

k z(x) € RY

Fully-connected

— layers

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 11 /31



Deep Learning

O@00000000

Supervised learning

Output Also some
J parametrized
transformation Let (X,‘,y,') be our data.
Xj € RP

High-level stack some FC layers and get

features! high-level representation

\ z(x) € RY
. choose final decision rule y(z).

Fully-connected

/ layers

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 11 /31



Deep Learning

O@00000000

Supervised learning

Output Also some
J parametrized
transformation Let (X,‘,y,') be our data.
Xj € RP

High-level stack some FC layers and get

features! high-level representation

\ z(x) € RY
. choose final decision rule y(z).

Fully-connected

e layers choose loss function Loss(y, 7)

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 11 /31



Deep Learning

O@00000000

Supervised learning

ut Also some
parametrized
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High-level stack some FC layers and get
features! high-level representation

\ z(x) € RY
. choose final decision rule y(z).

Fully-connected

T layens choose loss function Loss(y, )
L(F) = & 5 Loss(yi, 9(2(x:)))
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Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).

EyeR

m Linear layer: y = (w,z) + b
= y€[0,1]

m Linear layer + sigmoid: y = o ({w,z) + b)
mycR,

m Linear + exp: y = e{w:2)+b

= Linear + softplus: § = log (1 + e{":2)*b)
mye{l1,2,3...C}

m Linear layer 4 softmax: y = softmax ({w, z) + b)

(softmax = exp + normalize)

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 12 / 31



Deep Learning

[e]e]e] lelelele]ele)

Loss functions

m Regression
= MSE, MAE

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 13 /31



Deep Learning

[e]e]e] lelelele]ele)

Loss functions

m Regression
s MSE, MAE
m Classification

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 13 /31



Deep Learning

[e]e]e] lelelele]ele)

Loss functions

m Regression
= MSE, MAE
m Classification
m why cross-entropy is so popular?

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 13 /31



Deep Learning

[e]e]e] lelelele]ele)

Loss functions

m Regression
m MSE, MAE
m Classification
m why cross-entropy is so popular?

Probabilistic interpretation of supervised learning

x,y ~ p(x,y) = p(x)p(y | x)
ply [ x) —7

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 13 /31



Deep Learning

[e]e]e] lelelele]ele)

Loss functions

m Regression
m MSE, MAE
m Classification
m why cross-entropy is so popular?

Probabilistic interpretation of supervised learning

x,y ~ p(x,y) = p(x)p(y | x)
ply [ x) —7

Our neural network actually defines approximating distribution
q(y | x,60). What to do next?
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Losses derivation

m Maximum likelihood estimation:

Hq YI|X/> —>max

m Divergence minimization:

EpD(p(y | x) [ g(y | x,6)) = min

m Bayesian inference: seek for p(6 | X, Y)
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Kullback-Leibler divergence
Wasserstein distance
Jensen-Shannon divergence

Cramer distance
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Divergences

0.125 — plx)=A120,10)
0.100 — gix)=N(-5,3)
0.075
0.050
0.025
0.000
=20 =10 4] 10 20 30 40 50

m Kullback-Leibler divergence — the chosen one!

m Wasserstein distance

= Jensen-Shannon divergence

m Cramer distance

m .
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— ply)
KL(p || 9) -—/yp(y) log q(y)dy

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 16 / 31



Deep Learning

0OO00000e000

Kullback-Leibler Divergence

KL(p || 9) :Z/yp(y)log%dyZEp(y) 'Ogggg

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 16 / 31



Deep Learning

0OO00000e000

Kullback-Leibler Divergence

KL(p || 9) :Z/yp(y)log%dyZEp(y) 'Ogggg

Wonderful properties:

x p and g must share domain

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 16 / 31



Deep Learning

0OO00000e000

Kullback-Leibler Divergence

KL(p || 9) :Z/yp(y)log%dyZEp(y) 'Ogggg

Wonderful properties:
x p and g must share domain

X assymetric

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 16 / 31



Deep Learning

0OO00000e000

Kullback-Leibler Divergence

KL(p || 9) :Z/yp(y)log%dyZEp(y) 'Ogggg

Wonderful properties:
x p and g must share domain
X assymetric

% does not satisfy the triangle inequality

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019

16 / 31



Deep Learning

0OO00000e000

Kullback-Leibler Divergence

KL(p || 9) :Z/yp(y)log%dyZEp(y) 'Og';g;

Wonderful properties:
x p and g must share domain
X assymetric

% does not satisfy the triangle inequality
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Motivation behind Kullback-Leibler

Recall our task:
Ep( KL(P(y [ ) [l a(y | x,0)) — min
Using definition:
~ Ep(Ep(y1x) log a(y | x,0) — min

Const(0) terms can be ignored!

Implicit expectation minimization

We do not know p(x, y), but ability to sample from it is enough!
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How to calculate gradient for optimization methods in such case?

L(f) = Ep(xy) Loss(x, y,0) = min
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Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

L(f) = Ep(xy) Loss(x, y,0) = min

Proposition: VyL(f) = E, )V Loss(x, y,0)

Monte-Carlo estimation

M
1
Ep(x,y) Ve Loss(x, y, 0) ~ o Z Vg Loss(xi, yi, 0)

where x;, y; are samples from p(x, y).
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Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

L(f) = Ep(xy) Loss(x, y,0) = min

Proposition: VyL(f) = E, )V Loss(x, y,0)

Monte-Carlo estimation

M
1
Ep(x,y) Ve Loss(x, y, 0) ~ o Z Vg Loss(xi, yi, 0)

where x;, y; are samples from p(x, y).
V" an unbiased estimation (gives true gradient in expectation)
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Stochastic gradient descent

Use unbiased estimations of gradient instead of true gradients!

Algorithm 1 SGD
1: Initialize 8y randomly
:fort=0,1,2,... do
Sample M pairs x;, y; ~ p(x,y)
gt ﬁ E,M Vo Loss(x;, yi, 0¢)
Orr1 < 0r — gt
end for

AL
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Stochastic gradient descent

Use unbiased estimations of gradient instead of true gradients!

Algorithm 2 SGD

1: Initialize 8y randomly

2: fort=0,1,2,... do
3:  Sample M pairs x;, y; ~ p(x,y)
4: 8t < ﬁ E,M Vg LOSS(X,‘, Yi, 91_»)
5
6

Orp1 < O — 0e8e
. end for

SGD converges to local optima if
Zat 400 Zat < +o0
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Deep Learning

Unsupervised learning
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Autoencoder

Loss = [|x — x||

Y

reconstruction

feature
representation

ENCODER ("code")

coss
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Shaping latent representation

( Is]I? | @ (Loss = |Ix— %]

Y

reconstruction

feature
representation

ENCODER ("code")

coss
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Shaping latent representation
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Shaping latent representation

KL, D || p(s) b~ @ [Loss = ||Ix - 2I*)
—
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" feature
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VAE

[KL(.N' (u,0) || N, I )] leehhood
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VAE
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VAE
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Possible usage

[ Loss ]

learned
representation

ENCODER
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SPECIFIC
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e

|

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 24 /31



Deep Learning

[e]e]e]e] lelele]ele]e]e]

Possible usage

Loss =|lx— x|| Loss

learned
representation

% )  (Loutput )
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Transfer learning

FROZEN

(no parameters updates)

\

[ Loss ]

TASK- é ¥
SPECIFIC -
NET ‘,,‘ 5
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Transfer learning

/ FROZEN \

(no parameters updates)

dmic e
XGBoost -

) 4
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Example: digits that are not!

"https://arxiv.org/abs/1606.04345
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Example: digits that are not!

M DR R 2R,
S F r T rrrrrrrrrrrry
l}f‘ﬂk—fu (SR T S S~ S S S SN S S SR SN

"‘.A S A W e N WA ) W) W) s N G e e e

AARAALILLLLESESSRF L EKFGg944

dAARAAIL A Y| s X SRV E999 9

d ARAALLLLFASES(tblF|nn 90

A4 AALLLELISS S /- R 0N g
P org/ab 606.0434
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Generative Adversarial Networks (GAN)

Psynth Pdata
x(z1) X1
x(z2) X2
x(z3) X3
% GENERATOR
e
( z )

.....
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Generative Adversarial Networks (GAN)

Training discriminator D:
Loss(D, G) :=
DISCRIMINATOR _ _
% IExNplreal log D(X)
Psynth (—I deata _Exwpsynth IOg(l_D(X)) — len

x(z1) X1

x(z2) X2
x(z3) *3

)
%GENEMTOR
Cz D

.....
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Generative Adversarial Networks (GAN)

Training discriminator D:
i Loss(D, G) :=

%DISCRIMINATOR _EX ~Preal log D(x)

deata _Exwpsynth |0g(1—D(X)) - len
X1 ..
X Training generator G:
X3

Loss(D, G) — max

2 GENERATOR

= =

\ S

bl ——»f/xv
~
N
-~/ N

.....
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Generative Adversarial Networks (GAN)

Training discriminator D:
i Loss(D, G) :=

%DISCRIMINATOR _EX ~Preal log D(x)

deata _Exwpsynth |0g(1—D(X)) - len
X1 ..
X Training generator G:
X3

Loss(D, G) — max
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Conditional GAN (cGAN)

‘ in Train psynth(x | €)

to imitate pgata(x | €)!
%DISCRIMINATQR
deata

Psynth

x(z1), €1 x1.c1
,
x(z2), c2 X2,C
x(z3), ¢3 X3,€3

i
% GENERATOR

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 28 / 31



Deep Learning

000000008000

Conditional GAN (cGAN)

‘ in Train psynth(x | €)
to imitate pgata(x | €)!
%DISCRIMINATQR
Psynth gl’dm Ecp(c) Loss(D, G, c) — mDin
x(z1), €1 x1.c1
x(z2),¢2 X2, €2 Ecrp(c) Loss(D, G, ¢) — max
x(z3), ¢3 X3,€3 G

i
% GENERATOR
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Conditional GAN (cGAN)

‘ in Train psynth(x | €)
to imitate pgata(x | €)!
%DISCRIMINATQR
Psynth —— Paata Ecrp(c) Loss(D, G, ¢) — min
x(z1), €1 X D
1,€C1
x(z2), c2 X2,C2 E L
oss(D, G,c) — ma
x(z3), ¢3 X3,C3 c~p(c) ( [ ) GX
)
% V" condition can be of any
GENERATOR .
complexity!
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Conditional GAN (cGAN)

%DISCRIMINATQR
Q Pdata

Psynth

x(z1), €1 x1.c1
,
x(z2), c2 X2,C
x(z3), ¢3 X3,€3

i
% GENERATOR

Sergey Ivanov (617) MSU

Deep Learning Concepts

Train psynth(x | €)
to imitate pgata(x | €)!

Ecp(c) Loss(D, G, c) — mDin
Ecp(c) Loss(D, G, c) — max

V" condition can be of any
complexity!

v~ can be viewed as loss
function learning when
output is complex
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cGAN: Example

DISCRIMINATOR
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cGAN: Example

DISCRIMINATOR
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Unpaired learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 30 /31




Deep Learning

000000000080

Unpaired learning

GENERATOR
X-Y
(NOISE )
‘\
Al
’
X1 212 Y1
X2 »2
X3 y3
‘I
\
\
l\
(NOISE )
GENERATOR
Vo X
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Unpaired learning

GENERATOR
X-Y

( NOISE NOISE ) %
DISCRIMINATOR »
"is this x real?"
Y2
DISCRIMINATOR
% y3 "is this y real?"

e

(NOISE )

GENERATOR

Y- X
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Unpaired learning

GENERATOR
X-Y
(NOISE )
RECONSTRUCTION LOSS
2]
[1G2(G1(x)) — xI| m

DISCRIMINATOR 219
"is this x real?" -
DISCRIMINATOR
<—l—“_
[ Paxe | ‘
.
A RECONSTRUCTION LOSS
2
N 161G () = ¥
( NOISE )
GENERATOR
Y- X
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CycleGAN: Example

Summer _ Winter

Zebras 7 Horses
L8

winter —} summer

horse —» zebra
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