Deep Learning Concepts

Sergey Ivanov (617)

gbrick®@mail.ru

September 30, 2019

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 1/31

Deep Learning
m Basic idea
m Supervised learning
m Unsupervised learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 2/31

Deep Learning
000000

Deep Learning

Basic idea

Sergey Ivanov (617) MSU Deep Learning Concepts

ptember 30, 20 3/31

Deep Learning
(o] lelelele]e]

Key principle

Suppose we want to find some function y(x).

Concept of learning

construct some model y = f(x, 6) using basic building blocks

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 4 /31

Deep Learning
(o] lelelele]e]

Key principle

Suppose we want to find some function y(x).

Concept of learning

construct some model y = f(x, 6) using basic building blocks

select some differentiable scalar criterion to optimize L(f)

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 4 /31

Deep Learning
(o] lelelele]e]

Key principle

Suppose we want to find some function y(x).

Concept of learning

construct some model y = f(x, 6) using basic building blocks
select some differentiable scalar criterion to optimize L(f)

select optimization procedure (i.e. gradient descent)

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 4 /31

Deep Learning
(o] lelelele]e]

Key principle

Suppose we want to find some function y(x).

Concept of learning

construct some model y = f(x, 6) using basic building blocks

select some differentiable scalar criterion to optimize L(f)

select optimization procedure (i.e. gradient descent)
solve §* = mein L(f)

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 4 /31

Deep Learning
[e]e] lelelele]

Neurons

\ i Dendrite

h /

]

,\ /
\ 4

g (@R
\ \ Axon
N

Node of ranvler /

Schwann cell

Axon
terminals—___

Sergey Ivanov (617) MSU Deep Learning Concepts tember 30, 2019 5/31

Deep Learning
[e]e] lelelele]

Neurons

\ \ 4 Dgndrite
- A, - input: x € {0,1}
L OR— T

% o e
N

Node of ranvler /

Schwann cell

Axon
terminals—___

Sergey Ivanov (617) MSU Deep Learning Concepts tember 30, 2019 5/31

Deep Learning
[e]e] lelelele]

Neurons

\ \\ 4 Dendrite
A
e ' ° ey M X 6 {0’ 1}”
e @ parameters: w € R”,5 € R
. \ Q,,,
/\\, / ’ 2
Node of ranvuer /

Schwann cell

Axon
terminals—___

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 5/31

Deep Learning
[e]e] lelelele]

Neurons

\ " Dendrite

4 / . .
- put: x € {0,1}
(cseJL".-?d" *HO g parameters: w € R", b € R

. \qm i-th signal: w;x;
/\\, /’ “
Node of ranvuer /

Schwann cell

Axon
terminals—___

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 5/31

Deep Learning
[e]e] lelelele]

Neurons

\ \ 4 Dendrite
AN
- input: x € {0,1}"
(cseo'L".-?"" *HO b parameters: w € R", b € R
. \qm i-th signal: w;x;
/\\, /y 2, accumulation: >~ wix;

Node of ranvler /
Schwann cell

Axon
terminals—___

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 5/31

Deep Learning
[e]e] lelelele]

Neurons

\ i Dendrite

input: x € {0,1}"

F il
(cseo'L".-?"" *HO e parameters: w € R", b € R
. \Axon i-th signal: w;x;
/\\, /y\\ accumulation: >~ wix;
Noder ra"“'e’/ output: > wix; > b
Schwann cell

Axon
terminals—___

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 5/31

Deep Learning
[e]e]e] lelele]

Artificial neurons

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 6 /31

Deep Learning
[e]e]e] lelele]

Artificial neurons

y(x) =I[(w,x) — b > 0]
1.00 =====
075
Z o0s0 —— Heaviside step function (indicator)
0.25
0.00
—40 —20 0 20 40

Sergey Ivanov (617)

MSU

Deep Learning Concepts

2019

ptember 30

6/ 31

Deep Learning
[e]e]e] lelele]

Artificial neurons

y(x) =I[{w, x) — b > 0]

100

075

= —— Heaviside step function (indicator)
0.50 . -

) —— Sigmoid function
025

—40 —20 0 20 40

General idea

Everything discrete can be smoothed!

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 6 /31

Deep Learning
[e]e]e] lelele]

Artificial neurons

y(x) = o ({(w,x) — b)

100

075

= —— Heaviside step function (indicator)
0.50 . -

) —— Sigmoid function
025

—40 —20 0 20 40

General idea

Everything discrete can be smoothed!

Sigmoid function:
()= 1o
X)=——
? 14 e

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 6 /31

Deep Learning
[ee]ele] Tele]

Fully-connected layer

Standard building block for neural networks:
y(x) = o(Wx — b)

MODEL REALITY

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 7/31

Deep Learning
[ee]ele] Tele]

Fully-connected layer

Standard building block for neural networks:
y(x) = o(Wx — b)

MODEL REALITY

o
&5 universal approximation properties!

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 7/31

Deep Learning
[ee]ele] Tele]

Fully-connected layer

Standard building block for neural networks:
y(x) = o(Wx — b)

MODEL REALITY

o
&5 universal approximation properties!

if there is infinite number of neurons...

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 7/31

Deep Learning
[ee]ele] Tele]

Fully-connected layer

Standard building block for neural networks:
y(x) = o(Wx — b)

MODEL REALITY

@ universal approximation properties!
if there is infinite number of neurons...
@ stack more layers!

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 7/31

Deep Learning
[ee]ele] Tele]

Fully-connected layer

Standard building block for neural networks:
y(x) = o(Wx — b)

MODEL REALITY

@ universal approximation properties!
if there is infinite number of neurons...

@ stack more layers!
gradient vanishing / exploding problem!

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 7/31

Deep Learning
0O0000e0

Stacking a lot of layers

Sergey Ivanov (617) MSU Deep Learning Concepts

ptember 30, 2019 8 /31

Deep Learning
0O0000e0

Stacking a lot of layers

Residual connections

y =x+o(Wx —b)

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 8 /31

Deep Learning
0O0000e0

Stacking a lot of layers

5}

N

< =
el e

=]

=}

Residual connections

y =x+o(Wx —b)

Layer normalization

p=3x =S -y =(x—p)s

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 8 /31

Deep Learning
O00000e

Typical issues

® input x may have some complex structure: how to convert it
to vector in R9?

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 9/31

Deep Learning
O00000e

Typical issues

® input x may have some complex structure: how to convert it
to vector in R9?

m categorical features: one-hot encoding

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 9/31

Deep Learning
O00000e

Typical issues

® input x may have some complex structure: how to convert it
to vector in R9?

m categorical features: one-hot encoding
m images: convolutional layers 4+ pooling (CNN)

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 9/31

Deep Learning
O00000e

Typical issues

® input x may have some complex structure: how to convert it
to vector in R9?
m categorical features: one-hot encoding
m images: convolutional layers 4+ pooling (CNN)
m sequence: recurrent layers (RNN, LSTM, GRU)

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 9/31

Deep Learning
O00000e

Typical issues

® input x may have some complex structure: how to convert it
to vector in R9?
m categorical features: one-hot encoding
m images: convolutional layers 4+ pooling (CNN)
m sequence: recurrent layers (RNN, LSTM, GRU)
m raw audio: ?!?

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 9/31

Deep Learning
O00000e

Typical issues

® input x may have some complex structure: how to convert it
to vector in R9?
m categorical features: one-hot encoding
m images: convolutional layers 4+ pooling (CNN)
m sequence: recurrent layers (RNN, LSTM, GRU)
m raw audio: 717
m output y may have some complex structure: how to build the
model?

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 9/31

Deep Learning
O00000e

Typical issues

® input x may have some complex structure: how to convert it
to vector in R9?

m categorical features: one-hot encoding

m images: convolutional layers 4+ pooling (CNN)
m sequence: recurrent layers (RNN, LSTM, GRU)
m raw audio: ?!?

m output y may have some complex structure: how to build the
model?

m no or little data available, how to choose criterion?

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 9/31

Deep Learning
O00000e

Typical issues

® input x may have some complex structure: how to convert it
to vector in R9?

m categorical features: one-hot encoding

m images: convolutional layers 4+ pooling (CNN)
m sequence: recurrent layers (RNN, LSTM, GRU)
m raw audio: ?!?

m output y may have some complex structure: how to build the
model?

m no or little data available, how to choose criterion?

m uninterpretable («black box» model)

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 9/31

Deep Learning
000000000

Deep Learning

Supervised learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 10 / 31

Deep Learning

O@00000000

Supervised learning

Output Also some
J parametrized

transformation

High-level
extracted
features!

AN

Fully-connected

/ layers

Sergey Ivanov (617) MSU

Deep Learning Concepts

September 30, 2019

11/ 31

Deep Learning

O@00000000

Supervised learning

Output Also some
J parametrized
transformation Let (X,‘,y,') be our data.
Xj € RP

High-level
extracted
features!

AN

Fully-connected

— layers

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 11 /31

Deep Learning

O@00000000

Supervised learning

Output Also some
J parametrized
transformation Let (X,‘,y,') be our data.
Xj € RP

High-level stack some FC layers and get

features! high-level representation

k z(x) € RY

Fully-connected

— layers

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 11 /31

Deep Learning

O@00000000

Supervised learning

Output Also some
J parametrized
transformation Let (X,‘,y,') be our data.
Xj € RP

High-level stack some FC layers and get

features! high-level representation

\ z(x) € RY
. choose final decision rule y(z).

Fully-connected

/ layers

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 11 /31

Deep Learning

O@00000000

Supervised learning

Output Also some
J parametrized
transformation Let (X,‘,y,') be our data.
Xj € RP

High-level stack some FC layers and get

features! high-level representation

\ z(x) € RY
. choose final decision rule y(z).

Fully-connected

e layers choose loss function Loss(y, 7)

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 11 /31

Deep Learning

O@00000000

Supervised learning

ut Also some
parametrized
4,_/transformation Let (X,‘,y,') be our data.

High-level stack some FC layers and get
features! high-level representation

\ z(x) € RY
. choose final decision rule y(z).

Fully-connected

T layens choose loss function Loss(y,)
L(F) = & 5 Loss(yi, 9(2(x:)))

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 11 /31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).

EyeR

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 12 / 31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).

EyeR
m Linear layer: y = (w,z) + b

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 12 / 31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).
EyeR
m Linear layer: y = (w,z) + b
= y€[0,1]

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 12 / 31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).
EyeR
m Linear layer: §y = (w,z) + b
= y€[0,1]
m Linear layer + sigmoid: y = o ({w,z) + b)

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 12 /31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).
EyeR
m Linear layer: y = (w,z) + b
my€|0,]1]
m Linear layer + sigmoid: y = o ({w,z) + b)
mycR,

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 12 /31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).
EyeR
m Linear layer: §y = (w,z) + b
= y€[0,1]
m Linear layer + sigmoid: y = o ({w,z) + b)
mycR,
m Linear + exp: y = e{w:2)+b

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 12 /31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).
EyeR
m Linear layer: §y = (w,z) + b
= y€[0,1]
m Linear layer + sigmoid: y = o ({w,z) + b)
mycR,
m Linear + exp: y = e{w:2)+b

A

= Linear + softplus: § = log (1 + e{":2)*b)

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 12 / 31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).
EyeR
m Linear layer: §y = (w,z) + b
= y€[0,1]
m Linear layer + sigmoid: y = o ({w,z) + b)
mycR,
m Linear + exp: y = e{w:2)+b

A

= Linear + softplus: § = log (1 + e{":2)*b)
myei{1,23...C}

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 12 / 31

Deep Learning

00@0000000

Final decision rules

Here z € RY is high-level representation (outputs from neurons on
final layer).

EyeR

m Linear layer: y = (w,z) + b
= y€[0,1]

m Linear layer + sigmoid: y = o ({w,z) + b)
mycR,

m Linear + exp: y = e{w:2)+b

= Linear + softplus: § = log (1 + e{":2)*b)
mye{l1,2,3...C}

m Linear layer 4 softmax: y = softmax ({w, z) + b)

(softmax = exp + normalize)

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 12 / 31

Deep Learning

[e]e]e] lelelele]ele)

Loss functions

m Regression
= MSE, MAE

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 13 /31

Deep Learning

[e]e]e] lelelele]ele)

Loss functions

m Regression
s MSE, MAE
m Classification

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 13 /31

Deep Learning

[e]e]e] lelelele]ele)

Loss functions

m Regression
= MSE, MAE
m Classification
m why cross-entropy is so popular?

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 13 /31

Deep Learning

[e]e]e] lelelele]ele)

Loss functions

m Regression
m MSE, MAE
m Classification
m why cross-entropy is so popular?

Probabilistic interpretation of supervised learning

x,y ~ p(x,y) = p(x)p(y | x)
ply [x) —7

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 13 /31

Deep Learning

[e]e]e] lelelele]ele)

Loss functions

m Regression
m MSE, MAE
m Classification
m why cross-entropy is so popular?

Probabilistic interpretation of supervised learning

x,y ~ p(x,y) = p(x)p(y | x)
ply [x) —7

Our neural network actually defines approximating distribution
q(y | x,60). What to do next?

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 13 /31

Deep Learning

0O000@00000

Losses derivation

m Maximum likelihood estimation:

Hq(y,- | xi, 0) — max

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 14 / 31

Deep Learning

0O000@00000

Losses derivation

m Maximum likelihood estimation:

Hq YI|X/> —>max

m Divergence minimization:

EpD(p(y | x) [g(y | x,6)) = min

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 14 / 31

Deep Learning

0O000@00000

Losses derivation

m Maximum likelihood estimation:

Hq YI|X/> —>max

m Divergence minimization:

EpD(p(y | x) [g(y | x,6)) = min

m Bayesian inference: seek for p(6 | X, Y)

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 14 / 31

Deep Learning

[e]e]ele]e] lelelele)

Divergences

0.125 — plx)=N(20,10)
0.100
0.075
0.050
0.025

0.000

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019

Deep Learning

[e]e]ele]e] lelelele)

Divergences

0125 — plx)=~(20,10)
0.100 — gix)=N(-5,3)
0.075
0.050
0.025

0.000

Kullback-Leibler divergence
Wasserstein distance
Jensen-Shannon divergence

Cramer distance

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 15 / 31

Deep Learning

[e]e]ele]e] lelelele)

Divergences

0.125 — plx)=A120,10)
0.100 — gix)=N(-5,3)
0.075
0.050
0.025
0.000
=20 =10 4] 10 20 30 40 50

m Kullback-Leibler divergence — the chosen one!

m Wasserstein distance

= Jensen-Shannon divergence

m Cramer distance

m .

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 15 / 31

Deep Learning

0OO00000e000

Kullback-Leibler Divergence

— ply)
KL(p || 9) -—/yp(y) log q(y)dy

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 16 / 31

Deep Learning

0OO00000e000

Kullback-Leibler Divergence

KL(p || 9) :Z/yp(y)log%dyZEp(y) 'Ogggg

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 16 / 31

Deep Learning

0OO00000e000

Kullback-Leibler Divergence

KL(p || 9) :Z/yp(y)log%dyZEp(y) 'Ogggg

Wonderful properties:

x p and g must share domain

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 16 / 31

Deep Learning

0OO00000e000

Kullback-Leibler Divergence

KL(p || 9) :Z/yp(y)log%dyZEp(y) 'Ogggg

Wonderful properties:
x p and g must share domain

X assymetric

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 16 / 31

Deep Learning

0OO00000e000

Kullback-Leibler Divergence

KL(p || 9) :Z/yp(y)log%dyZEp(y) 'Ogggg

Wonderful properties:
x p and g must share domain
X assymetric

% does not satisfy the triangle inequality

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019

16 / 31

Deep Learning

0OO00000e000

Kullback-Leibler Divergence

KL(p || 9) :Z/yp(y)log%dyZEp(y) 'Og';g;

Wonderful properties:
x p and g must share domain
X assymetric

% does not satisfy the triangle inequality

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 16 / 31

Deep Learning

0000000 e00

Motivation behind Kullback-Leibler

Recall our task:

Ep) KL(P(y [X) [a(y | x,6)) = min

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 17 / 31

Deep Learning

0000000 e00

Motivation behind Kullback-Leibler

Recall our task:
Ep) KL(P(y [X) [a(y | x,6)) = min
Using definition:

Ep)Ep(y|x) 108 P(y | X) = EpoEp(yjx) log a(y | x. 0) — min

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 17 / 31

Deep Learning

0000000 e00

Motivation behind Kullback-Leibler

Recall our task:
Ep(KL(P(y [) [l a(y | x,0)) — min
Using definition:
B0 Ep(y1x) log Py [X) = EpEp(y}x) log aly | x,8) — min

Const(0) terms can be ignored!

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 17 / 31

Deep Learning

0000000 e00

Motivation behind Kullback-Leibler

Recall our task:
Ep(KL(P(y [) [l a(y | x,0)) — min
Using definition:
~ Ep(Ep(y1x) log a(y | x,0) — min

Const(0) terms can be ignored!

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 17 / 31

Deep Learning

0000000 e00

Motivation behind Kullback-Leibler

Recall our task:
Ep(KL(P(y [) [l a(y | x,0)) — min
Using definition:
~ Ep(Ep(y1x) log a(y | x,0) — min

Const(0) terms can be ignored!

Implicit expectation minimization

We do not know p(x, y), but ability to sample from it is enough!

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 17 / 31

Deep Learning

0000000080

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

L(f) = Ep(xy) Loss(x, y,0) = min

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 18 / 31

Deep Learning

0000000080

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

L(f) = Ep(xy) Loss(x, y,0) = min

Proposition: VyL(f) = E,)V Loss(x, y,0)

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 18 / 31

Deep Learning

0000000080

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

L(f) = Ep(xy) Loss(x, y,0) = min

Proposition: VyL(f) = E,)V Loss(x, y,0)

Monte-Carlo estimation

M
1
Ep(x,y) Ve Loss(x, y, 0) ~ o Z Vg Loss(xi, yi, 0)

where x;, y; are samples from p(x, y).

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 18 / 31

Deep Learning

0000000080

Monte-Carlo gradient estimation

How to calculate gradient for optimization methods in such case?

L(f) = Ep(xy) Loss(x, y,0) = min

Proposition: VyL(f) = E,)V Loss(x, y,0)

Monte-Carlo estimation

M
1
Ep(x,y) Ve Loss(x, y, 0) ~ o Z Vg Loss(xi, yi, 0)

where x;, y; are samples from p(x, y).
V" an unbiased estimation (gives true gradient in expectation)

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 18 / 31

Deep Learning

000000000 e

Stochastic gradient descent

Use unbiased estimations of gradient instead of true gradients!

Algorithm 1 SGD
1: Initialize 8y randomly
:fort=0,1,2,... do
Sample M pairs x;, y; ~ p(x,y)
gt ﬁ E,M Vo Loss(x;, yi, 0¢)
Orr1 < 0r — gt
end for

AL

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 19 / 31

Deep Learning

000000000 e

Stochastic gradient descent

Use unbiased estimations of gradient instead of true gradients!

Algorithm 2 SGD

1: Initialize 8y randomly

2: fort=0,1,2,... do
3: Sample M pairs x;, y; ~ p(x,y)
4: 8t < ﬁ E,M Vg LOSS(X,‘, Yi, 91_»)
5
6

Orp1 < O — 0e8e
. end for

SGD converges to local optima if
Zat 400 Zat < +o0

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 19 / 31

Deep Learning
@®00000000000

Deep Learning

Unsupervised learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 20 /31

Deep Learning

O@®0000000000

Autoencoder

I

feature
representation

ENCODER ("code")

5

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 21 /31

Deep Learning

O@®0000000000

Autoencoder

Loss = [|x — x||

Y

reconstruction

feature
representation

ENCODER ("code")

coss

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 21 /31

DECODER

e

Deep Learning

O0@000000000

Shaping latent representation

(Is]I? | @ (Loss = |Ix— %]

Y

reconstruction

feature
representation

ENCODER ("code")

coss

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 22 /31

DECODER

e

Deep Learning

O0@000000000

Shaping latent representation

KL(p(s) | NO, D) b D (Loss = [Ix — &I
—

reconstruction

" feature
representation
("eode")

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 22 /31

Deep Learning

O0@000000000

Shaping latent representation

KL, D || p(s) b~ @ [Loss = ||Ix - 2I*)
—

reconstruction

" feature
representation
("eode")

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 22 /31

Deep Learning

[e]e]e] le]ele]e]ele]e]e]

VAE

leehhood

DECODER

ENCODER

200 b

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 23 /31

Deep Learning

[e]e]e] le]ele]e]ele]e]e]

VAE

[KL(.N' (u,0) || N, I)] leehhood
&)
DECODER
ENCODER

200 b

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 23 /31

Deep Learning

[e]e]e] le]ele]e]ele]e]e]

VAE

(KLW(,0) | NO,D)] & | —Likelihood |
T ® o

= DECODER
(N(,I))/ ENCODER

200 b

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 23 /31

Deep Learning

[e]e]e] le]ele]e]ele]e]e]

VAE

(KLW(,0) | NO,D)] & | —Likelihood |

DECODER
(N(,I))/ ENCODER

S\

~ Nu.a™D)
—

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 23 /31

Deep Learning

[e]e]e]e] lelele]ele]e]e]

Possible usage

[Loss]

learned
representation

ENCODER

TASK-
SPECIFIC

NET S
e

|

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 24 /31

Deep Learning

[e]e]e]e] lelele]ele]e]e]

Possible usage

Loss =|lx— x|| Loss

learned
representation

%) (Loutput)

ENCODER DECODER LT\
rasic é , 9

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 24 /31

Deep Learning

[e]e]e]e]e] lele]ele]e]e]

Transfer learning

FROZEN

(no parameters updates)

\

[Loss]

TASK- é ¥
SPECIFIC -
NET ‘,,‘ 5

Sergey Ivanov (617)

MSU

Deep Learning Concepts

September 30, 2019 25 /31

Deep Learning

[e]e]e]e]e] lele]ele]e]e]

Transfer learning

/ FROZEN \

(no parameters updates)

dmic e
XGBoost -

) 4

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 25 /31

Deep Learning

[e]e]e]ele]e] le]ele]e]e]

Example: digits that are not!

"https://arxiv.org/abs/1606.04345
Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 26 / 31

https://arxiv.org/abs/1606.04345

Deep Learning

[e]e]e]ele]e] le]ele]e]e]

Example: digits that are not!

M DR R 2R,
S F r T rrrrrrrrrrrry
l}f‘ﬂk—fu (SR T S S~ S S S SN S S SR SN

"‘.A S A W e N WA) W) W) s N G e e e

AARAALILLLLESESSRF L EKFGg944

dAARAAIL A Y| s X SRV E999 9

d ARAALLLLFASES(tblF|nn 90

A4 AALLLELISS S /- R 0N g
P org/ab 606.0434

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 26 /31

https://arxiv.org/abs/1606.04345

Deep Learning

0OO000000@0000

Generative Adversarial Networks (GAN)

Psynth Pdata
x(z1) X1
x(z2) X2
x(z3) X3
% GENERATOR
e
(z)

.....

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 27 /31

Deep Learning

0OO000000@0000

Generative Adversarial Networks (GAN)

Training discriminator D:
Loss(D, G) :=
DISCRIMINATOR _ _
% IExNplreal log D(X)
Psynth (—I deata _Exwpsynth IOg(l_D(X)) — len

x(z1) X1

x(z2) X2
x(z3) *3

)
%GENEMTOR
Cz D

.....

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 27 /31

Deep Learning

0OO000000@0000

Generative Adversarial Networks (GAN)

Training discriminator D:
i Loss(D, G) :=

%DISCRIMINATOR _EX ~Preal log D(x)

deata _Exwpsynth |0g(1—D(X)) - len
X1 ..
X Training generator G:
X3

Loss(D, G) — max

2 GENERATOR

= =

\ S

bl ——»f/xv
~
N
-~/ N

.....

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 27 /31

Deep Learning

0OO000000@0000

Generative Adversarial Networks (GAN)

Training discriminator D:
i Loss(D, G) :=

%DISCRIMINATOR _EX ~Preal log D(x)

deata _Exwpsynth |0g(1—D(X)) - len
X1 ..
X Training generator G:
X3

Loss(D, G) — max

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 27 /31

Deep Learning

000000008000

Conditional GAN (cGAN)

‘ in Train psynth(x | €)

to imitate pgata(x | €)!
%DISCRIMINATQR
deata

Psynth

x(z1), €1 x1.c1
,
x(z2), c2 X2,C
x(z3), ¢3 X3,€3

i
% GENERATOR

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 28 / 31

Deep Learning

000000008000

Conditional GAN (cGAN)

‘ in Train psynth(x | €)
to imitate pgata(x | €)!
%DISCRIMINATQR
Psynth gl’dm Ecp(c) Loss(D, G, c) — mDin
x(z1), €1 x1.c1
x(z2),¢2 X2, €2 Ecrp(c) Loss(D, G, ¢) — max
x(z3), ¢3 X3,€3 G

i
% GENERATOR

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 28 / 31

Deep Learning

000000008000

Conditional GAN (cGAN)

‘ in Train psynth(x | €)
to imitate pgata(x | €)!
%DISCRIMINATQR
Psynth —— Paata Ecrp(c) Loss(D, G, ¢) — min
x(z1), €1 X D
1,€C1
x(z2), c2 X2,C2 E L
oss(D, G,c) — ma
x(z3), ¢3 X3,C3 c~p(c) ([) GX
)
% V" condition can be of any
GENERATOR .
complexity!

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 28 / 31

Deep Learning

000000008000

Conditional GAN (cGAN)

%DISCRIMINATQR
Q Pdata

Psynth

x(z1), €1 x1.c1
,
x(z2), c2 X2,C
x(z3), ¢3 X3,€3

i
% GENERATOR

Sergey Ivanov (617) MSU

Deep Learning Concepts

Train psynth(x | €)
to imitate pgata(x | €)!

Ecp(c) Loss(D, G, c) — mDin
Ecp(c) Loss(D, G, c) — max

V" condition can be of any
complexity!

v~ can be viewed as loss
function learning when
output is complex

September 30, 2019 28 / 31

Deep Learning

000000000 e00

cGAN: Example

DISCRIMINATOR

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 29 /31

Deep Learning

000000000 e00

cGAN: Example

DISCRIMINATOR

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 29 /31

Deep Learning

000000000080

Unpaired learning

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 30 /31

Deep Learning

000000000080

Unpaired learning

GENERATOR
X-Y
(NOISE)
‘\
Al
’
X1 212 Y1
X2 »2
X3 y3
‘I
\
\
l\
(NOISE)
GENERATOR
Vo X

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 30 /31

Deep Learning

000000000080

Unpaired learning

GENERATOR
X-Y

(NOISE NOISE) %
DISCRIMINATOR »
"is this x real?"
Y2
DISCRIMINATOR
% y3 "is this y real?"

e

(NOISE)

GENERATOR

Y- X
Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 30 /31

Deep Learning

000000000080

Unpaired learning

GENERATOR
X-Y
(NOISE)
RECONSTRUCTION LOSS
2]
[1G2(G1(x)) — xI| m

DISCRIMINATOR 219
"is this x real?" -
DISCRIMINATOR
<—l—“_
[Paxe | ‘
.
A RECONSTRUCTION LOSS
2
N 161G () = ¥
(NOISE)
GENERATOR
Y- X

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 30 /31

Deep Learning

00000000000 e

CycleGAN: Example

Summer _ Winter

Zebras 7 Horses
L8

winter —} summer

horse —» zebra

Sergey Ivanov (617) MSU Deep Learning Concepts September 30, 2019 31/31

	Deep Learning
	Basic idea
	Supervised learning
	Unsupervised learning

