Set of the time series

Time TS	1	2	 T-3	T-2	T-1	Т
1	a _{1,1}	a _{1,2}	 a _{1,T-3}	a _{1,T-2}	a _{1,T-1}	a _{1,T}
2	a _{2,1}	a _{2,2}	 a _{2,T-3}	a _{2,T-2}	a _{2,T-1}	a _{2,T}
		•••	 			
N	a _{N,1}	a _{N,2}	 a _{N,T-3}	a _{N,T-2}	a _{N,T-1}	a _{N,T}

N – number of the time series

T – length of the series

$$a_{i,j} \in E_k, i = 1,2,...,N, j = 1,2,...,T$$

The set of the time series

Dependency in the time series

Consider a dependency

$$R = (n, \omega, f)$$

Time TS	1	2		T-3	T-2	T-1	Т	
1	a _{1,1}	a _{1,2}	•••	a _{1,T-3}	a _{1,T-2}	a _{1,T-1}	a _{1,T}	
2	a _{2,1}	a _{2,2}		a _{2,T-3}	a _{2,T-2}	a _{2,T-1}	a _{2,T} •	2 _{2,T+1}
								\uparrow
N	a _{N,1}	a _{N,2}	•••	a _{N,T-3}	a _{N,T-2}	a _{N,T-1}	a _{N,T}	

1. n – index of the time series
$$n \in \{1, 2, ..., N\}$$

$$f: E_k^{\|\omega\|} \to \{0, 1, ..., k-1, \lambda\}$$

1. n – index of the time series $n \in \{1,2,,N\}$ 2. ω – mask ($ \omega $ is number of 1's), $\omega \in E_2^{N\times N}$	$_{\Delta}$ $a_{1,T-1}$	a _{2,T-2}	a _{N,T-1}	
$R = \begin{cases} 2.6 & \text{mask (\omega \text{ is Hamber of 1-6}), so } \subseteq \mathbb{Z}_2 \\ 3. & \text{f- partially definite function of } \omega \\ \text{variables} \end{cases}$	0	0	0 0	
$f: E_k^{\ \omega\ } \to \{0, 1, \dots, k-1, \lambda\}$	0		1	
λ – the value is not defined	Δ			

(maximum time-lag)

Markup the time series

The markup is a sequence of 0s and 1s.

Two types of the marks Up and Down (the marks could intersect each other on a single time series).

The parameters:

- dropdown maximum overall drop down on the price decay (maximum rise during the fall of the trend), in fractions of the overall price change, in the (0,1) segment: (0 – any dropdown is allowed, 1 – no dropdown is allowed)
- minint minimum number of the consecutive 1s, takes values from 1 to 24.
- level the threshold of the price variation relatively to the average value; the variation below the threshold is not marked as Up/Down.

Markup, an example

Similarity and synchronization

- **Interval** is consecutive series of markups in corresponding to the series (quarterly transaction volumes for a given sector or a given stock).
- Intervals are considered to be similar, if the number of non-equal samples is not greater than a given value tolerance.
- **Similarity** between time series A and B is the sum of the number of equal Up/Down corresponded pairs of the marks.

An example of similar intervals:

threshold = 0	threshold = 2	threshold = 2
00111100	000111010	00111110
00111100	000111100	01111100

Two time series are considered to be synchronous if the number of the similar intervals is greater than a given value **threshold**.

The parameters:

- tolerance refers to the maximum number of non-equal samples in an interval (if the tolerance exceeds then intervals are not similar);
- threshold refers to the minimum number of the similar intervals in the pair of time series.

Synchronization of the owners

