3a Kakyto 3agadvy bpaTbes?

» MacwTtabHocTb npobnemsl: pelueHne npobaemMbl JOXKHO
KacaTbCst BoNbLIOro Yyncna noaeli, CneumanncTos, any,
NPVHUMAIOLINX PELIEHNS.

» 3abpowenHocTb (nonynsipHocTb) npobaembl. Obuwias ownbka:
pelaTk nonynsipHble npobnemMsl.

» Pewaemoctb npobniembl. Beibop npocTo n aneraHTHO
pewwaemeix npobsem.

» Hawa roToBHOCTb K pelueHuto npobnembl, KBannukaums:
MOXOXKMMU MPOEKTAMU Mbl Y>K€ 3aHUMAJINCh.
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Problem statement for machine learning

Formal problem statement, an analyst has to set

1) an algebraic structure for the dataset from measurements

2) a data generation hypothesis from 1)

)
3) a model, or a mixture from 2)
4) an error function (quality criteria with restrictions) from 2)
)

5) an optimization algorithm from 3) and 4)

The result of the model construction is a Cartesian product

{models x data sets x quality critea}.

Def: Big data rejects the i.i.d. (independent and identically
distributed random variables) data generation hypothesis from 2). It

requests a mixture model.
4/1



Quality criteria for model generation and selection

Three sources of quality criteria
1. Business: model operation productivity, agent impact to
environment
2. Theory: statistical hypothesis, bayesian inference

3. Technology: optimization requirements, resources

The main criteria of model quality

» Precision: MAPE, AUC

» Stability (diversity): std deviation for prediction, covariance of
parameters
» Complexity: structure complexity, MDL, evidence of model

3/1



Basic algorithms Linear specification Ordinal specification Ordinal features

Decision support and Integral indicator construction

The integral indicator is a measure

of object’s quality. It is a scalar, corresponded to an object.

The integral indicator is an aggregation

of object’s features that describe various components of the term
“quality”. Expert estimation of object’s quality could be an integral
indicator, too.

2/36



Basic algorithms

Examples
Index name Objects Features Model
TOEFL exams Students Tests Sum of scores
Eurovision Singers Televotes, Linear
Jury votes (weighted sum)

S&P500. NASDAQ

Time-ticks

Shares

(prices, volumes)

Non-linear

Bank ratings Banks Requirements By an expert
commission
Integral Indicator | Power Plants | Waste Linear
H ’
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Basic algorithms Linear specification Ordinal specification Ordinal features

There given a set of objects

Croatian Thermal Power Plants and Combined Heat and Power
Plants

® Plomin1 TPP

® Plomin 2 TPP

O Rijeka TPP

O Sisak TPP

® TE-TO Zagreb CHP
® EL-TO Zagreb CHP
@ TE-TO Osijek CHP
@® Jetrovac TPP
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Basic algorithms Linear specification Ordinal specification Ordinal features

There given a set of features

Outcomes and Waste measurements
@ Electricity (GWh)

@ Heat (TJ)

© Available net capacity (MW)
O SO: (t)

© NOX (t)

@ Particles (t)

@ CO2 (ki)

@ Coal (kt)

© Sulphur content in coal (%)
@ Liquid fuel (kt)

@ Sulphur content in liquid fuel
(%)
® Natural gas (10° m?)

5/36



Basic algorithms Linear specification Ordinal specification Ordinal features

How to construct an index?

Assign a comparison criterion

Ecological footprint of the Croatian Power Plants

Gather a set of comparable objects
TPP and CHP (Jetrovac TPP excluded)

Gather features of the objects

Waste measurements

Make a data table: objects/features
See 7 objects and 10 features in the table below

Select a model

Linear model (with most informative coefficients)
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Basic algorithms

Data table and feature optimums

2 —

N Power Plant S _ 2
£

wo 2

1 Plomin 1 TPP 452 0
2 Plomin 2 TPP 1576 0
3 Rijeka TPP 825 0
4 Sisak TPP 741 0
5 TE-TO Zagreb CHP 1374 481

6 EL-TO Zagreb CHP 333 332
7 TE-TO Osijek CHP 114 115

~= o g g8
= < =~ €3 o
s < > .88 3282 8§
8% e e 3 € 223 &3 g% TE
T o i x £ S ® 2§ S 23 2¢
28 8 £ 8§ 8 83 Z3c 382
98 1950 1378 140 454 198 0.54 043 0.2 0
192 581 1434 60 1458 637 0.54 037 0.2 0
303 6392 1240 171 616 O 0 200 22 0
396 3592 1049 255 573 0 0 112 179 121
337 2829 705 25 825 0 0 80 1.83 309
90 1259 900 19 355 O 0 39 21 126
42 1062 320 35 160 0 0 37 1.1 24
max, min| min,min| min min| min| min| min__min
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Basic algorithms

Notations
X = {xjj} is the (n x m) is the real matrix, the data set;
Yy =[y1,...,ym]" is the vector of integral indicators;
w = [wi,...,w,]" is the vector of feature importance weights;

Yo, Wq are the expert estimations of the indicators and the weights;

wip W Wp
T yi | Xxu1  X12 X1n

w
= Y2 | Xo1  X22 Xon

y| X
Ym | Xml Xm2 Xmn

Usually, data prepared so that

e the minimum of each feature equals 0, while the maximum

equals 1;

e the bigger value of each implies better quality of the index.

8/36



Basic algorithms Linear specification Ordinal specification Ordinal features

Pareto slicing

Find the non-dominated objects at each slicing level.

feature,

L ~0b ]:L

ob 5
_obj ;L; 0;,% """"""""""""""
. L( N T ?

7N — b
~— feature,

moon I

The object a is non-dominated

if there is no b; such that bj; > a; for all features index j.

9/36



Basic algorithms Linear specification

Ordinal specification

Metric algorithm

Ordinal features

The best (worst) object is an object that contains the (maximum)
minimum values of the features.

The index is

r

r
yi=r Z <Xij _ X})est)

Jj=1

For r = 1, this algorithm
coincides the weighted sum
with equal weighs.

feature,
A

the best

the worst

> feature,

10 /36



Basic algorithms Linear specification Ordinal specification Ordinal features

Weighted sum

Y1 = XWO’
%1 X11 X12 v X1n wq
)% _ X21 X22 e X2n wo
Ym Xmi Xm2 --- Xmn Wm

11/36



Basic algorithms

Principal Components Analysis
Y = XV, where V is the rotation matrix of the principal
components. The indicators ypca = Xwipc, where wipc is the 1%
column vector of the matrix V' in the singular values
decomposition X = ULV T.

.fi’f’ff/”ez obj, IPC
obj, .. 4 ng'
Q
N7 q4q1 obj,
2PC ST e
q";--.(.](’ obj,
Ob«/._)' ) ..'o
¥ obj;
J
> feature,

PCA gives minimum mean square error between objects and their

projections.
12/36



Basic algorithms

The Integral Indicator

Ecological Impact of the Croatian Power Plants

Integral
Power Plant Indicator
TE-TO Zagreb CHP 253 '
EL-TO Zagreb CHP 249 '
TE-TO Osijek CHP 246 '
Plomin 2 TPP 183 '
Rijeka TPP 157 '
Sisak TPP 148 '
Plomin 1 TPP 107 '

0 0.5 1 1.5 2 25
Integral Indicator
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Basic algorithms

The Importance Weights of the Features

Feature Weight
Coal (t) 0.38
Sulphur contentin coal (%) 0.37
NOX (t) 0.35
Liquid fuel (t) 0.34
S02 (t) 0.34
Particles (t) 0.33
Natural gas (103 m3) 0.30
CO2 (kt) 0.29
Sulphur contentin |.fuel (%) 0.18
Available net capacity (MW) 0.12

0 005 01 015 02 025 03 035
Features' importance
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Basic algorithms

Integral Indicator

Linear specification

Ordinal specification

Ordinal features

The PCA Indicator versus Pareto Slicing

261 TE-TO Zagreb CHP%
EL-TO Zagreb CHP
241 TE-TO Osijek CHP
22}
27 Plomin 2 TP!
1 8 // *
| pd
Rijeka TPP
16+ +*
+ Sisak TPP
1.4} -
e
12} //
L Plomin 1 TPP
1 / 1 [ 1 1 1 I}
1 15 2 25 3 35

Pareto Slicing for CO, and Particles

15/36



Basic algorithms Linear specification Ordinal specification Ordinal features

Pair-wise comparison, toy example

apple
als|p|i-c apple soup pp v
apple ° + |+ 1
soup ° |+ |- m
= ream
;701 ridge o | — K ™g ;
ice-cream ° porridge  ice-cream "
SOHp\"

porridge 1

I an object in a row is better than the other one m a column then put “+7,
otherwise -

Make a graph, row + column means row e——e column.
Find the top and remove extra nodes.
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Basic algorithms Linear specification Ordinal specification Ordinal features

The expert-statistical method

Having plan matrix X and expert-given target vector yo, compute

optimal parameters

Least squares:

17 /36



Linear specification

The problem of specification

e We have
expert estimations yg, wo,
calculated weights and indicators w; = XTyq, y1 = Xwyg.

e Contradiction. In general,

Y1 # Yo, Wi # Wo.

e Concordance. Call the estimations y and w concordant if the
following conditions hold:

y=Xw, w=XTy.

18 /36



Basic algorithms Linear specification Ordinal specification Ordinal features
Expert estimations concordance

e Denote by yj = XXTyq the projection of the vector yq to the
space of the columns of the matrix X.

e a-concordance method: vectors wy, Yq,
we = awp + (1 — a)XTyh,  yo = (1 —a)yy + aXwy,
are concordant for a € [0; 1].

Features space, dim n Objects space, dim m
L]
Yo

w1 X+

/
T\ Yo X subspace, dim n
" ‘
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Linear specification

~-concordance

The ~-concordance method finds concordant estimations in the
neighborhoods of the vectors wy, y; as a solution of the following
optimization problem,

W = arg min (¢ +475%),

where e2 = |lwp — w,||? and (?2 = llyo — y4 1%

Features space, dim n Objects space, dim m

5 = |lyo — yal?

Ya
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Basic algorithms Linear specification Ordinal specification Ordinal features

Concordance methods comparison

The x-axis shows the values of the parameter a changing from 0 to
1, whereas parameter ~ is the function of «,

so 7 changes from 0 to oc.

— a—concordance

—Yy—concordance

Object estimations, y

21/36



Ordinal specification

Ordinal-scaled expert estimations

Experts make estimations in the ordinal scales:

yi=..2ym=0,
w1 > ...>2w, > 0.
In matrix notations:
-1 0 ... 0
Jmy 2 0, -1 ...

where J = 0 1 1 0
Jw207 ...................
0 O 0 1

Consider two cones instead of two vectors:

Y ={y|Jmy =0},
W ={w|J,w > 0}.

22/36



Basic algorithms Linear specification Ordinal specification Ordinal features

Ordinal specification

e The linear operator X maps the cone W, of the expert
estimations of the criteria weights wg to the computed
cone XW.

e The linear operator XX maps the cone )y of the expert
estimations of the objects yg to the cone Vj = XX* ).

Features space, dim n Objects space, dim m
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Basic algorithms Linear specification Ordinal specification Ordinal features

Cones intersection: specification is needed

The cones Y, XW do not intersect: the expert estimations
contradict each other.
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Basic algorithms Linear specification Ordinal specification Ordinal features

Cones intersection: no specification is needed

The cones Y, XW intersect: the expert estimations do not
contradict each other.

V2
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Ordinal specification

How to specify the expert estimations?

We propose 2 ways to specify the rank-scaled expert estimations.

Searching of the nearest vectors in the cones by:

e Distance minimization,

e Correlation maximization,

and Nearly-isotonic regression.

26 /36



Basic algorithms Linear specification Ordinal specification Ordinal features

Nearest vectors in the cones

Distance minimization:

(v w) = _min lly = Xwli subject to [ Xw]z = 1,[ly]l = 1

Correlation maximization (p is the Spearman rank-correlation
coefficient):

(y'wh) = jemax oy, Xw) subject to [ Xwllz =1, ]lyll2 = 1.

27 /36



Ordinal specification

Alternative approach: Nearly-Isotonic Regression

Again, the expert estimations:
Ow=>...2w, >0,
0 w = X"y,

The problem of specification in rank scales:

R . 1 n N n—1
w=arg min | =3 (% —w)*+ AY (wi—wi)e |,
j=1 =1

ref. to yo ref. to expert estimations of w

where \ is a regularizer.
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Basic algorithms Linear specification Ordinal specification Ordinal features

Nearly-isotonic regression algorithm: illustration
A blue dot is a feature weight.

z(wj) = w;, n=100.
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Ordinal features

Notations

The sample © = (X, y) is given.
e X =[x1,---» Xp] is a plan matrix,

features x; CR™, je J ={1,...,n}.

e y C R™is a set of integral indicators.

Linear scale: x; € R™, j€J.
Ordinal scale (total order):

xj = €RE|l X1 > X2 > . = Xjm}-

Ordinal scale (partial order):

xj ={x €RY[ Xjty 2 Xjkys -}

30/36



Ordinal features

Ordinal scale

e Ordinal-scaled feature X,
X;j = {x €RY| x1 222> ... 2 Xjm],

is a convex polyhedral cone in R™.

e The cone x;; corresponds to a partial order defined on the set
of values of the j-th feature.

31/36



Ordinal features

Cone point decomposition

For every point x of the cone x the following theorem holds:

L
X:WZ)\kaa W>07 Z)\k:]-a )\kZOa
k=1

where L is a number of different values for the feature ,
¢\ is a cone generator corresponding to the feature x:

. 17 fl> )
- {r T

0, otherwise.
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Basic algorithms

Linear specification

Ordinal specification

Cone point decomposition: illustration

L L
x:wg A€, w =0, g Ak =
k=1 k=1
X1
X
& G=[u1
At
G =[L0
X
A2
¢ X2

Ordinal features

33/36



Basic algorithms Linear specification Ordinal specification Ordinal features

Ordinal scale binarization illustration

Give an example of a partially ordered set:

X = {x1,x,x3] x1 = x0,x1 = x3}.

\

X3

X1 X2

A matrix Z = [{1, (>, (3], corresponding to this graph:

¢i ¢ C3

1 1 1
z= (o 1 o],

0O 0 1

Xox=AZ, A>0, |A|=1L
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Basic algorithms Linear specification Ordinal specification Ordinal features

Integral indicator construction model

e Model of the integral indicator construction:

y1 = f([Xb"'vXn]vw)'

e Linear model generalization for the case of ordinal features:

Y1 = wiiZi + ...+ WnAnZn,

w€R, A eA={AA>0 Al =1}
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Preference learning problem

The goal of research
To provide a method for preference estimation on a set of objects
described by a set of ordinal features

The challenges

1. To propose a partial order cone concept to describe a finite
partially ordered set.

2. To investigate properties of a composition of partial order
cones.

3. To develop a method of ordinal-scaled dependency recovering.

1/19



History of problem

© 0N o ok WD

,_.
o

Social choice theory (K. Arrow, 1951)
Preference aggregation (J. Kemeny, 1959)
Ordinal regression (P. McCullagh, 1980)

Expert estimations (B. Litvak, 1996)

Learning to rank (W. Cohen, R. Shapiro, 1999)
Ranking SVM (R. Herbrich et al., 1999)

Cones usage (V. Strijov, 2006)

Criteria importance theory (V. Podinovskiy, 2007)
Decision theory (F. Aleskerov, 2007)

Preference learning (J. Fuernkranz, 2011)
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There are given an ordinal description and categories of species

lllustrative example: categorization of threatened species

Population Habitat Structure

Species size structure variation Category

Green extinct
sturgeon small spotty stable in the wild

Ladoga critically
coregonus small solid segmented endangered
long-finned

charr high dispersion | segmented endangered

Polar
bear high solid unknown vulnerable

The goal: to construct a model of categorization by the
expert-given ordinal object description




Problem setting

Input data

There given a set of pairs D = {(x;, y;)}7; such that an

object x; = [xi1, ..., Xin] T,

xjj is an element of a non-numeric matrix X with columns X;:
X = [X1, oo, Xp]-

Elements xj €L; and y; €Y

belong to sets with given partial order relations.
The problem
To construct a model f : Ly x ... x L, — R such that
» f is a monotone function, x; = xx — f(x;) > f(xx).
» f optimally estimates a preference relation given by a vector y.
The optimality condition is
Vi =y — f(xi) > f(xk).

4/19



Basic concepts

» Partial order relation > is a reflexive, antisymmetric, and
transitive binary relation.

» Partial order matrix Z is a matrix describing pairwise
dominance relation of objects:

if Xj = Xk s

201, k) = {0 if  x; % Xk

» X, is a partial order cone coresponding to a finite poset X, if

Xo={x€R]| xizxk—xi>xk i,k=1,.,m}

5/19



Partial order cone

Xp is a polyhedral partial order cone given by a matrix A of size

m2><m:

Xo={x [ Ax <0},
such that a string of matrix A has the form
[0,...,0,—1;,0,...,0,14,0,...,0] and corresponds ta an

inequality x; = x.
Theorem [Minkowski, Weyl]
Each polyhedral cone Xy is

non-empty and finitely
generated,
.

o = {3 My | M= 0

A1

6/19



Explicit form of cone generators

Let a cone X be generated with the columns of matrix Z:
X ={ZX| XA >0}.

Theorem [Kuznetsov: 2013]

The following statements are valid for the cone X’ and the partial
order cone Xy = {x | Ax < 0}.

1. The cone X is a subset of the cone Xj,
X C X
2. In the case of linear order on X, the cones X and X, are equal:

X =X,

7/19



Polyhedral model with ordinal features

The problem

To construct a monotone function f : Ly x ... x L, — R, optimally
estimating a preference relation given by a vector y,

Vi =y — f(xi) > f(xk).

To solve a problem, define a class of models.

Linear polyhedral model

A set of values for a model f(X) on the sample D is a Minkowski
sum of the cones A7, ..., X,:

f(X)eEX=X16...8 X,

8/19



Polyhedral model parameter optimization

Parametrization theorem [Kuznetsov: 2013]
A point f(X) of the cone X is defined by a formula:

f(X) =D 2, A0,
j=1

where Z; is a partial order matrix for the cone X.

Optimal parameters

We construct a solution f as a projection of a vector y € D to the
cone X:

f=Px(y).

Optimal parameters X minimize the expression:

n
X = arg min —ZZ-)\- 2.
gAjIZOHy > % jll2
j=1
9/19



Reduction of parameter space

Polyhedral model:
n
f(X)=>"ZiA;, =0
j=1

In the cone X we consider a
n

. - 1 )
central point X = - Z z;.

j=1

Theorem [Kuznetsov: 2014]

By replacing each cone X = {>_ Ajkzjx | Ax > 0} with its central
point, the polyhedral model can be expressed as

f(X) = ZX,

~ n
where Z = )" w;Z; is a matrix of pairwise object dominance.
Jj=1 10/19



Algotihm of parameter optimization

Input: a sample D = {(x;, yi)}.
Output: optimal parameters w, .
Algorithm:
1. Construct matrices Z1,...,Z,,Zy.
~ ~ n
2. Estimate a matrix Z: Z(i, k) = Y w;Z;(i, k).
j=1

Z Z

20 40 60 30 100 40 60
Objects Objects

3. Estimate parameters A: A = arg )r\n|>rb ly — ZX|3.
;>

11/19



Concordance of ordinal expert estimations

The problem
To construct a monotone function f : R” — Y such that

i~y —  f(x;) = f(xk),
with consideration of preference relation over the set of features,

Xs = Xr.

Set of linear models
We consider a linear model with a vector of parameters w € W,

f(X) = zn: Wi X,
i=1

where W = {w|wy > ... > wy} is a partial order cone on the set of

features.
12/19



Concordance problem statement [Strijov: 2011]

The problem is to find vectors y € ) u w € W such that:

(9, W) = argmin [y —Xwl[3, |yl3=1, |w[3=1.
yey, wew

13/19



Parameter optimization for a concordance problem
[Kuznetsov: 2012]

» To find optimal parameters we solve consecutive problems of
non-negative least squares with a matrix X,, = XZ,,:

Problem 2k : ‘ Problem 2k +1 :

Ay = )t?izno sz>‘y - Xw)‘WH% ‘ Aw = Ar?vizno ”Zy>‘y - XWAWH%

» Theorem: an algorithm finds an optimal solution for not more
than m + n iterations.
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Partial order matrix properties

r1, rp — ordinal vectors, Z;,Z, — corresponding matrices.

Theorem: ordinal metrics generalization
The following expressions hold.

1. Spearman correlation:

m 2
r1,r2 O(Z(Z —Zg(l,k)) .

1

2. Kendall correlation:
7(r1,r2) o Y Y " (Za(i, k) — Za(i, K))?.
3. Multiclass AUC:

1 — . 501
AUC = 0 D [2(k.i) = O)[Z(k, 1) = 0], M= 3 memi,.
k,i=1 ki=<k2

15/19



Categorization of threatened species of the IUCN Red List

Expert-given data Features description
Species - T an A Feature scale
o o9 <o o 3 — large
° =S @ 3 o .
2. c 9= an 2 Population 2 — small
LY ® e s <] size 1 — critically small
S < 0 — unknown
Green 3 — big
sturgeon 2 2 0 1 Habitat 2 — limited
Ladoga square 1 — very limited
whitefish 0 2 1 2 0 — unknown
Long-finned Genetic 3 — high
charr 3 1 0 3 diversity 2 — low
Polar 1 — unknown
ge?;b o 3 3 0 4 5 — least concern
ufi-breaste, 4 — vulnerable
sandpiper 2 1 o 3 Category 3 — endangered
Azovian 2 — critically endangered
l:;/luga 1 3 1 1 1 — extinct in the wild
ater
chestnut 3 3 2 2 L. .
Omphalina Pairwise feature dominance
hudsoniana 2 2 0 3 S oI S0
Sakhalin w B <2 % c_<|3 2
sturgeon 1 2 1 1 N = 8= 2 2
D o8| 08 | FE
innik’s s
o
viper 3 3 2 2 - - 3
Siberian Population size 1 1 1
tiger > > 1 > Hablitat square 0 1 0
Tropical Genetic diversity 0 0 1
lichens 2 1 1 5
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Categorization results

m
Error function — Hamming loss, S(y,§) = £ 3" |y; — Jil.
i=1

Algorithm Learning error | Tessting error
Conic 0.29 0.58
Decision tree 0.25 0.69
GLM 0.57 0.71
o [0 !
254 vu R & @3
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Basic statements

The goal:

to construct a model of the IUCN Red List threatened species
categorization using expert estimations of the features.

The model must:

@ use ordinal scales of expert estimations,
@ obtain optimal complexity,

© rely on expert-given categorization.

1/24



Features assumptions

The following assumptions about features structure are
considered:

@ the given set of features is sufficient to construct an adequate
model;

® the complete order relation is defined on the feature values;

© the rule "the bigger the better” is valid, that is the greater
feature value causes the greater preference by an object;

O different expert estimations of the same object are allowed.

2/24



List of features

@ Population size.

® Growth rate.

© Occurency/density.

O Physiological state.

@ Habitat state.

® Population structure trend.
@ Monitoring.

® New populations.

© Capacity build.

3/24



Input data

A data fragment.

Species: Russian desman

Feature Condition Change trend
Population size 3 — high; 4 — grows;
2 — low; 3 — stable;
1 — critical 2 — decreases slowly;
1 — decreases rapidly
Population 2 — complex; 2 — stable;
structure 1 - simple 1 - local populations
disappear

A partial order is defined over the set of features.

4/24



Problem statement

There is given
a set of pairs ©® = {(x;,yi)}, i € Z={1,..., m}.

Ordinal scales and class labels

Every object x = [X1,.--,Xj,---,Xd] . is described by
ordinal-scaled features x; € Lj = {1 < --- < k;}. A partial order is
set over the set of features.

Over the set Y = {1,2,3} of the class labels y it is given a strict
order relation: 1 < 2 < 3.

The goal is to construct a monotone function ¢: x — y

|

Yopt = argmin S(y) = arg min — Z r (yi, p(xi))-
@ e MizZ

5/24



Dominance relation

Algorithm

Twoclass monotone classification
Multiclass monotone classification

Feature 2

=

==

Xn

Xi

Xp

4
Feature 1

6

Without features hierarchy

Xp ™ n X,
if xpj > xjj foreach jeJ.

Xp ™ p Xk,
if xpj < xij foreach jeJ.

Any object doesn't dominate
itself: x n x, X ¥p X

6/24



Algorithm e
€ Twoclass monotone classification

Multiclass monotone classification

Dominance relation

With features hierarchy
Leat a feature r be more important than t.

Xn =5 Xi, if Xp >=n X;

or Xpr > Xpt and X/t =, x;. 8
o Xk
X,
(\l6 ‘ X21
. E P
Xp =5 Xk, if Xp > p X z,
rt (0]
or Xxpr < Xpr and X = Xk. = x21
Xn
2 [}
X
Any object doesn’'t dominate o
H . 0 2 4 6 8
itself: x ¥5x, X ¥px. Foature 1

7/24



Algorithm e
€ Twoclass monotone classification

Multiclass monotone classification

Dominance areas

The feature 1 is more | The feature 2 is more
important than 2 important than 1
8| 8|
6 Xp 6 Xp
N o
Xpl > Xn2, £, £,
£ 2
Xp1 < Xp2 Xn X
2 b
% 2 4 3 0 2 4 8
Feature 1 Feature 1
8| 8|
Né 6
A o S %
Xn1 < Xn2, 54 L:‘4
& B & X
Xpl > Xp2
2 b
(0 2 4 8 0 2 4 8
Feature 1 Feature 1

8/24



Algorithm e
€ Twoclass monotone classification

Multiclass monotone classification

Optimal Pareto fronts

POF,, POF,

A set of objects x, if for each element doesn't exist any other
element x’ such that

. / I o) . / 0o -
POF,: X >=p,x (X' =5x); POF, : X' >px (X' >5x).
9 9
Thmmmmnn- @ FAREEE T S '
«~ 6 : ’@ 6 - 1
=1 ' =1 '
.25 ******** @ .25 -
&4 &4
3 3 3 }
2 3 2 3
! 2 6 8 ! 2 8
Feature 1 Feature 1

9/24



Algorithm e
€ Twoclass monotone classification

Multiclass monotone classification

Two-class classification

x — a classified object
f(-) — a classifier function

0, Xp 7 n X;
1 Xp = p X;
f(x) = ’ PP
f argmin  (p(x,x)) |, otherwise.
x' €POF,UPOF,

POF,, POF, are boundaries of dominance spaces for the
corresponding optimal Pareto fronts.
p is a distance function between objects,

p(x.X) = 37 (. ).

j=1
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Algorithm

Twoclass monotone classification
Multiclass monotone classification

Two-class classification example

9
8l
7
~ 6F
s
; i
2 E
b : . l\iﬂ Object x | f(x)
Feature 1 (4'5) 0
2 [ (67) 1
3] (9.6) 1
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Algorithm e
€ Twoclass monotone classification

Multiclass monotone classification

Separable sample construction

9r L 9r L

8r L] ] ] 8 [ ] [ ] n

7k n n 7k n n
 6F = @ ISR L]
g =
2 5f L] 2 5f L]
B B
gt @ gt

3r 3r

2r 2r

U

® 2 8 ! 2 8

Feature 1 Feature 1
(c) With defective objects (d) Without defective objects
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Algorithm e .
& Twoclass monotone classification

Multiclass monotone classification

Monotone classifier definition

{1<---<u=<u+1=<--=<2z}=17— class labels

fuut1: x — ¥ € {0,1} — two-class classifier for a pair of adjacent
classes

«0» — classes with labels y < u
«1» — classes with labels y = u+1

min{u | fy u+1(x) =0}, if {u | fyur1(x) =0} # 0;
p(x) = § ve”

z, if {u]| fuur1(x)=0}=0.
L2 ... |lu—1u|luu+1|..]2z-1, 2z
1 1 0 0
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Algorithm P
& Twoclass monotone classification

Multiclass monotone classification

Multiclass classification example

Feature 2
S wn N

Feature 1
Ne | Object x | fia(x) | fa3(x) | ©(x)
1] (L) 0 0 1
2 | (5.4) 1 0 2
3 (9,9) 1 1 3
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Algorithm P
& Twoclass monotone classification

Multiclass monotone classification

Fronts extension for monotone classification

9 9r
8 8r
7 A 7 A
ISEY) A « 6F A
2] 2]
Esl e Y el . X
< ' < [l
o 1 o 1
LL4 L---@ A LL4, Lo--@ A
3 L-e 3r L-e
) S o ) S 0
! 2 8 ! 2 4 8
Feature 1 Feature 1
(e) Without extension (f) With extension

A common object for two n-fronts
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Algorithm P
& Twoclass monotone classification

Multiclass monotone classification

Admissible classifiers

Transitivity condition

fuut1(x) =0= f(u_,_s)(u_,_l_,_s)(x) =0 foreachs:(u+1+s)<z,
fuut1(x) =1= f(u—s)(u—i—l—s)(x) =1 foreachs: (u—s)>1

Definition

Classifier ¢ is called admissible, if for every classifier function f, 41
the transitivity condition holds.

Theorem

If the Pareto optimal fronts POF,(u) and POF,(u + 1) don't
intersect for each u=1,...,z — 1, then the transitivity condition
holds for any classified object.
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Algorithm illustration
Initial sample of objects

Or ]
8t R
71 ° A m =
67 ° [ SR )
5r @ A ® u
4} e o = °
[
2 4 6 8
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Algorithm illustration
Objects of the category 2
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Algorithm illustration
Optimal Pareto front (POF,)
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Algorithm illustration
Objects of the category 2 and 3

Or [
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Algorithm illustration

Optimal Pareto fronts (POF,, POF,)
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Algorithm illustration

Model with all fronts

A~ U N N 0 O
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Algorithm illustration

Excluded defective objects
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Algorithms comparison
Experiment

Algorithms comparison

. Mean Time of model
Algorithm erroron | LOO .
test construction, sec
POF (proposed) 0.22 0.56 2.1
Decision trees 0.25 0.69 0.4
Curvilinear regression ' | 0.57 | 0.71 3.6
Cones 2 029 | 0.58 1.2
Copulas 3 0.57 0.61 0.25

15A M.P. Kuznetsov, V.V. Strijov, M.M. Medvednikova Multiclass classification algorithm of the

ordinal scaled objects // St. Petersburg State Polytechnical University Journal. Computer Science.
Telecommunication and Control Systems, 2012. Ne. 5. C. 92-95.
1. M.P. Kuznetsov and V.V. Strijov. Methods of expert estimations concordance for integral
quality estimation Expert Systems with Applications, 41(4):1988-1996, March 2014.
Kuznetsov M.P. Integral indicator construction using copulas // Journal of Machine Learning and
Data Analysis. 2012. V. 1, Ne 4. Pp. 411-419.
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