Восстановление зависимости в исходном и целевом пространствах

Прогностическая модель

декодирования

Согласование зависимостей в скрытом пространстве

Задачи структурной биологии для белков длины m

 $\mathcal{A} = \{\mathsf{Ala}, \mathsf{Arg}, \mathsf{Asn}, \mathsf{Asp}, \mathsf{Cys}, \mathsf{Glu}, \mathsf{Gln}, \mathsf{Gly}, \mathsf{His}, \dots, \mathsf{Trp}, \mathsf{Tyr}, \mathsf{Val}\}$

$$Cys = \underbrace{[N, C_{\alpha}, C, H, O]}_{CKEЛЕТНАЯ ЧАСТЬ}, \underbrace{H_{\alpha}, C_{\beta}, H_{\beta_{1}}, H_{\beta_{2}}, S_{\gamma}, H_{\gamma}]}_{\text{боковая цель}}$$

$$S_{b} = \mathbb{R}^{3 \times 3}, \underbrace{K_{a} = \mathcal{R}^{3 \times 3}}_{S_{b} = \mathbb{R}^{3 \times 3}}, \underbrace{S_{b}^{m} \subset \mathcal{A}^{m} \times \mathbb{S}_{b}^{m} \times \mathbb{R}^{m}}_{\mathcal{R}} - \text{ мн-во белков}}$$

$$S_{t}^{m} \subset \mathcal{A}^{m} \times \mathbb{S}_{b}^{m} - \text{ редуц. белки}$$

$$S_{t}^{m} \subset \mathcal{A}^{m} \times \mathbb{S}_{b}^{m} - \text{ редуц. белки}$$

$$\varphi_{r} - \varphi_{ondurr} \text{ боковых цепей}}$$

$$\varphi_{f} - \varphi_{ondurr} \text{ белка}$$

$$\varphi_{d} - \text{ обратный фолдинг}$$

$$\varphi_{d} - \text{ обратный фолдинг}$$

Анализ спутниковых снимков

Рудаков К.В., Адуенко А.А., Рейер И.А., Василейский А.С., Карелов А.И., Стрижов В.В. Алгоритмы выделения и совмещения устойчивых отражателей на спутниковых снимках // Компьютерная оптика, 2015.

イロト イポト イヨト イヨト

Условие согласованности прогнозов

 $x_t(:,:) = \sum_{i=1}^n x_t(i,:);$ $x_t(:,:) = \sum_{i=1}^m x_t(:,j);$ $x_t(i,:) = \sum_{j=1}^m x_t(i,j),$ i = 1, ..., n; $x_t(:,j) = \sum_{i=1}^{n} x_t(i,j),$ j = 1, ..., m; $t = 1, \ldots, T$. x 10⁴ $\mathbf{x}(i, j), \text{tons}$

01 - 2007

01-2008

Dav

Описание молекулярной химической связи

В данной работе исследуются взаимные пространственные ориентации различных пар молекул, образующих между собой химическую связь. Эта связь характеризуется тремя параметрами:

- r расстояние между молекулами, $r \in [3Å, 20Å];$
- (θ, φ) пара сферических углов, определяющих положение лиганда в системе координат аминокислоты, *theta* $\in [0, \pi], \varphi \in [0, 2\pi].$

Представление выборки для пары ALA-C_{ar}

4 / 18

20 10

+10

20

z

На рисунке представлен временной ряд и проекция его фазовой траектории в трехмерное пространство. $\mathbf{x}_t = \mathbf{x}(t)$ – точка на фазовой траектории в момент времени t.

Ближайшие соседи на фазовых траекториях

Пример согласованной проекции в скрытое пространство

Исходные переменные $\mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}).$

Целевые переменные \mathbf{y}_i линейно зависят от pc_2 и не зависят от pc_1 .

Согласование проекций матриц **X** и **Y** находит оптимальное скрытое представление, отклоняя вектора \mathbf{w}_k и \mathbf{c}_k от направления главных компонент.

Декодируемые сигналы электрокортикограммы

- Сигналы $\mathbf{s}(t) \in \mathbb{R}^{N_{\mathsf{ch}}}$. N_{ch} число электродов
- $m{\bullet}$ Координаты электродов $m{\mathsf{Z}} = \left\{ (m{\mathsf{z}}_j \in \mathbb{R}^2, j \in \{1 \dots, N_{ch}\}
 ight\}$
- Положение кисти в пространстве $\mathbf{y}(t) \in \mathbb{R}^3$

Chao ZC, Nagasaka Y, Fujii N (2010). "Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys."Frontiers in Neuroengineering 3:3.

Постановка задачи кластеризации точек.

Сегмент — последовательность точек временного ряда, которая относится к одному характерному физическому действию человека: шаг, прыжок. Цепь — последовательность сегментов, которые образуют квазипериодическую последовательность точек.

а) временной ряда разбитый на сегменты; b) проекции на плоскость фазовых траекторий временного ряда, которые относятся к Туре 1 и Туре 2.

Сегментирование квазипериодического временного ряда Квазипериодический временной ряд $\mathbf{s} = \{s(t_1), \ldots, s(t_i), \ldots, s(t_m)\}$ длины *m* определяется набором $\langle \mathbf{s}^*, a(i, s), f(i) \rangle$, так что

 $s(t_i) = a(i, s_{[f(i)]}),$ где $\mathbf{s}^* = [s_1, \dots, s_T]^\mathsf{T}$ — базовый сегмент, $a(i, s), i \in \{1, \dots, m\}$ — трансформация формы базового сегмента, $f(i) \mapsto \{1, \dots, T\}$ масштабирование по времени.

Теорема (Мотренко)

Для временного ряда s вида $s(t_i) = A_i \cos(2\pi w i + \phi) \ c \ w \in (0, 1/2),$ $\phi \in [0, 2\pi), \ m \cdot w \in \mathbb{N}$ и $A_i : \exists C \in \mathbb{R}|A_i| < C \ \forall i$ главные компоненты \mathbf{y}_1 и \mathbf{y}_2 могут быть представлены в виде

 $y_1(I) = B_1(I)\cos(2\pi wI + \phi_1),$

 $y_2(I)=B_2(I)\cos(2\pi wI+\phi_2),$ $\phi_1,\ \phi_2\in[0,2\pi),\ I=1,\ldots,m-N+1$ где разница между $|\phi_1-\phi_2| o\pi/2.$

Структура решения

Банк тем: сохранение интерпретируемых тем

Банк тем — модель полного набора тем: таких тем, которые

- 1) интерпретируемы,
- существенно различны,
- 3) обеспечивают высокое правдоподобие модели p(Ф, ⊖ | D).

Построение банка тем

Аналогично построению двухуровневой иерархической тематической модели:

Пространство параметров

Рис.: изолированные оптимумы

Рис.: не изолированные оптимумы

¹https://arxiv.org/pdf/1802.10026.pdf